Mechanics

500 Mechanics MCQs | Physics Objective Questions with Answers

This page brings you 500 carefully crafted Mechanics multiple choice questions (MCQs) with answers and explanations, designed to help students, educators, and exam aspirants master the fundamentals of physics. Covering Kinematics, Newton’s Laws, Work–Energy, Momentum, Friction, Circular Motion, Gravitation, Oscillations, and Fluid Mechanics, this complete practice bank ensures balanced topic coverage and exam‑style preparation.

Whether you’re preparing for competitive exams, university tests, or quick concept revision, these MCQs provide a unique blend of conceptual and numerical problems. Each question is solved with clear reasoning, making this collection a go‑to study guide for anyone aiming to strengthen their Mechanics foundation.

Q1. A force of 10 N is applied at 60° to the horizontal. The displacement is 5 m. Work done is:
(a) 25 J ✅
(b) 50 J
(c) 75 J
(d) 100 J
Explanation: Work = F·d·cosθ = 10×5×cos60° = 25 J

Q2. A machine delivers 200 J of work in 4 seconds. Its power is:
(a) 25 W
(b) 50 W ✅
(c) 100 W
(d) 200 W
Explanation: Power = Work/Time = 200/4 = 50 W

Q3. A body of mass 2 kg is lifted to a height of 5 m. The work done is:
(a) 100 J ✅
(b) 50 J
(c) 25 J
(d) 10 J
Explanation: Work = m·g·h = 2×10×5 = 100 J

Q4. A 60 W bulb glows for 2 minutes. Energy consumed is:
(a) 7200 J ✅
(b) 120 J
(c) 3600 J
(d) 600 J
Explanation: Energy = Power × Time = 60×120 = 7200 J

Q5. A force of 20 N moves a body 10 m in the direction of force. Work done is:
(a) 200 J ✅
(b) 20 J
(c) 2 J
(d) 100 J
Explanation: Work = F·d = 20×10 = 200 J

Q6. A pump lifts 100 kg of water to a height of 10 m in 5 s. Power developed is:
(a) 2000 W ✅
(b) 1000 W
(c) 500 W
(d) 4000 W
Explanation: Work = m·g·h = 100×10×10 = 10000 J; Power = 10000/5 = 2000 W

Q7. A body of mass 5 kg moving at 4 m/s has kinetic energy:
(a) 40 J ✅
(b) 20 J
(c) 80 J
(d) 10 J
Explanation: KE = ½mv² = ½×5×16 = 40 J

Q8. Potential energy of a 2 kg body at 10 m height is:
(a) 200 J ✅
(b) 20 J
(c) 100 J
(d) 400 J
Explanation: PE = m·g·h = 2×10×10 = 200 J

Q9. A motor does 3000 J of work in 10 s. Its power is:
(a) 300 W ✅
(b) 30 W
(c) 3 W
(d) 3000 W
Explanation: Power = Work/Time = 3000/10 = 300 W

Q10. A force of 50 N is applied on a body at 30° to displacement of 4 m. Work done is:
(a) 173 J ✅
(b) 200 J
(c) 100 J
(d) 50 J
Explanation: Work = F·d·cosθ = 50×4×cos30° ≈ 173 J

Q11. A man lifts a box of 10 kg to a height of 2 m. Work done is:
(a) 200 J ✅
(b) 20 J
(c) 100 J
(d) 400 J
Explanation: Work = m·g·h = 10×10×2 = 200 J

Q12. A 100 W fan runs for 1 hour. Energy consumed is:
(a) 360,000 J ✅
(b) 100 J
(c) 36,000 J
(d) 3,600 J
Explanation: Energy = Power × Time = 100×3600 = 360,000 J

Q13. A body of mass 1 kg moving at 10 m/s has kinetic energy:
(a) 50 J ✅
(b) 100 J
(c) 25 J
(d) 10 J
Explanation: KE = ½mv² = ½×1×100 = 50 J

Q14. A spring with constant k = 200 N/m is stretched by 0.1 m. Energy stored is:
(a) 1 J ✅
(b) 2 J
(c) 0.5 J
(d) 10 J
Explanation: PE = ½kx² = ½×200×0.01 = 1 J

Q15. A horse pulls a cart with 500 N force for 100 m. Work done is:
(a) 50,000 J ✅
(b) 5000 J
(c) 1000 J
(d) 2500 J
Explanation: Work = F·d = 500×100 = 50,000 J

Q16. A machine does 600 J of work in 2 minutes. Power is:
(a) 5 W ✅
(b) 10 W
(c) 20 W
(d) 50 W
Explanation: Power = Work/Time = 600/120 = 5 W

Q17. A body of mass 2 kg moving at 3 m/s has kinetic energy:
(a) 9 J ✅
(b) 6 J
(c) 12 J
(d) 18 J
Explanation: KE = ½mv² = ½×2×9 = 9 J

Q18. A 2 kg stone is dropped from 20 m. Potential energy lost is:
(a) 400 J ✅
(b) 200 J
(c) 20 J
(d) 40 J
Explanation: PE = m·g·h = 2×10×20 = 400 J

Q19. A motor of 2 kW runs for 30 minutes. Energy consumed is:
(a) 3.6×10^6 J ✅
(b) 6×10^5 J
(c) 6×10^4 J
(d) 3.6×10^5 J
Explanation: Energy = Power × Time = 2000×1800 = 3.6×10^6 J

Q20. A force of 100 N moves a body 2 m at 60°. Work done is:
(a) 100 J ✅
(b) 200 J
(c) 50 J
(d) 150 J
Explanation: Work = F·d·cosθ = 100×2×cos60° = 100 J

Q21. A 500 W heater runs for 10 minutes. Energy consumed is:
(a) 300,000 J ✅
(b) 30,000 J
(c) 5000 J
(d) 50,000 J
Explanation: Energy = Power × Time = 500×600 = 300,000 J

Q22. A body of mass 4 kg moving at 5 m/s has kinetic energy:
(a) 50 J ✅
(b) 100 J
(c) 25 J
(d) 10 J
Explanation: KE = ½mv² = ½×4×25 = 50 J

Q23. A 10 kg body is lifted to 15 m. Potential energy gained is:
(a) 1500 J ✅
(b) 1000 J
(c) 500 J
(d) 2000 J
Explanation: PE = m·g·h = 10×10×15 = 1500 J

Q24. A machine does 1200 J of work in 2 minutes. Power is:
(a) 10 W ✅
(b) 20 W
(c) 5 W
(d) 50 W
Explanation: Power = Work/Time = 1200/120 = 10 W

Q25. A force of 40 N moves a body 3 m at 45°. Work done is:
(a) 85 J ✅
(b) 120 J
(c) 60 J
(d) 40 J
Explanation: Work = F·d·cosθ = 40×3×cos45° ≈ 85 J

Q26. The mass of a body is 10 kg. Its weight on Earth is:
(a) 100 N ✅
(b) 10 N
(c) 50 N
(d) 500 N
Explanation: Weight = m·g = 10×10 = 100 N

Q27. A body of mass 5 kg is accelerated at 2 m/s². Force applied is:
(a) 10 N ✅
(b) 5 N
(c) 20 N
(d) 2 N
Explanation: F = m·a = 5×2 = 10 N

Q28. A 20 kg body is in free fall. Force acting is:
(a) 200 N ✅
(b) 20 N
(c) 100 N
(d) 400 N
Explanation: F = m·g = 20×10 = 200 N

Q29. A body of mass 2 kg is pushed with 6 N force. Acceleration is:
(a) 3 m/s² ✅
(b) 6 m/s²
(c) 2 m/s²
(d) 12 m/s²
Explanation: a = F/m = 6/2 = 3 m/s²

Q30. A force of 50 N acts on a 25 kg body. Acceleration is:
(a) 2 m/s² ✅
(b) 5 m/s²
(c) 0.5 m/s²
(d) 10 m/s²
Explanation: a = F/m = 50/25 = 2 m/s²

Q31. A body of mass 10 kg is accelerated at 5 m/s². Force applied is:
(a) 50 N ✅
(b) 5 N
(c) 100 N
(d) 500 N
Explanation: F = m·a = 10×5 = 50 N

Q32. A 2 kg body is acted upon by 10 N force. Acceleration is:
(a) 5 m/s² ✅
(b) 2 m/s²
(c) 10 m/s²
(d) 20 m/s²
Explanation: a = F/m = 10/2 = 5 m/s²

Q33. A body of mass 50 kg has weight:
(a) 500 N ✅
(b) 50 N
(c) 1000 N
(d) 250 N
Explanation: Weight = m·g = 50×10 = 500 N

Q34. A force of 100 N acts on a 20 kg body. Acceleration is:
(a) 5 m/s² ✅
(b) 10 m/s²
(c) 2 m/s²
(d) 20 m/s²
Explanation: a = F/m = 100/20 = 5 m/s²

Q35. A body of mass 1 kg is accelerated at 10 m/s². Force applied is:
(a) 10 N ✅
(b) 1 N
(c) 100 N
(d) 5 N
Explanation: F = m·a = 1×10 = 10 N

Q36. A 5 kg body is acted upon by 25 N force. Acceleration is:
(a) 5 m/s² ✅
(b) 25 m/s²
(c) 2 m/s²
(d) 10 m/s²
Explanation: a = F/m = 25/5 = 5 m/s²

Q37. A body of mass 15 kg has weight:
(a) 150 N ✅
(b) 15 N
(c) 300 N
(d) 75 N
Explanation: Weight = m·g = 15×10 = 150 N

Q38. A force of 40 N acts on a 10 kg body. Acceleration is:
(a) 4 m/s² ✅
(b) 10 m/s²
(c) 2 m/s²
(d) 20 m/s²
Explanation: a = F/m = 40/10 = 4 m/s²

Q39. A body of mass 8 kg is accelerated at 3 m/s². Force applied is:
(a) 24 N ✅
(b) 8 N
(c) 16 N
(d) 32 N
Explanation: F = m·a = 8×3 = 24 N

Q40. A 12 kg body has weight:
(a) 120 N ✅
(b) 12 N
(c) 240 N
(d) 60 N
Explanation: Weight = m·g = 12×10 = 120 N

Q41. A force of 60 N acts on a 30 kg body. Acceleration is:
(a) 2 m/s² ✅
(b) 3 m/s²
(c) 6 m/s²
(d) 1 m/s²
Explanation: a = F/m = 60/30 = 2 m/s²

Q42. A body of mass 25 kg is accelerated at 4 m/s². Force applied is:
(a) 100 N ✅
(b) 25 N
(c) 50 N
(d) 200 N
Explanation: F = m·a = 25×4 = 100 N

Q43. A 3 kg body has weight:
(a) 30 N ✅
(b) 3 N
(c) 15 N
(d) 60 N
Explanation: Weight = m·g = 3×10 = 30 N

Q44. A force of 90 N acts on a 15 kg body. Acceleration is:
(a) 6 m/s² ✅
(b) 9 m/s²
(c) 3 m/s²
(d) 15 m/s²
Explanation: a = F/m = 90/15 = 6 m/s²

Q45. A body of mass 6 kg is accelerated at 2 m/s². Force applied is:
(a) 12 N ✅
(b) 6 N
(c) 24 N
(d) 18 N
Explanation: F = m·a = 6×2 = 12 N

Q46. A 7 kg body has weight:
(a) 70 N ✅
(b) 7 N
(c) 140 N
(d) 35 N
Explanation: Weight = m·g = 7×10 = 70 N

Q47. A force of 20 N acts on a 4 kg body. Acceleration is:
(a) 5 m/s² ✅
(b) 4 m/s²
(c) 2 m/s²
(d) 10 m/s²
Explanation: a = F/m = 20/4 = 5 m/s²

Q48. A body of mass 9 kg is accelerated at 3 m/s². Force applied is:
(a) 27 N ✅
(b) 9 N
(c) 18 N
(d) 36 N
Explanation: F = m·a = 9×3 = 27 N

Q49. A 2 kg body has weight:
(a) 20 N ✅
(b) 2 N
(c) 10 N
(d) 40 N
Explanation: Weight = m·g = 2×10 = 20 N

Q50. A force of 150 N acts on a 50 kg body. Acceleration is:
(a) 3 m/s² ✅
(b) 5 m/s²
(c) 2 m/s²
(d) 10 m/s²
Explanation: a = F/m = 150/50 = 3 m/s²

Q51. Which law explains why a rocket moves forward when gases are expelled backward?
(a) Newton’s First Law
(b) Newton’s Second Law
(c) Newton’s Third Law ✅
(d) None
Explanation: Rocket propulsion is due to action-reaction pairs, Newton’s Third Law.

Q52. A body continues in its state of rest or uniform motion unless acted upon by an external force. This is:
(a) Newton’s First Law ✅
(b) Newton’s Second Law
(c) Newton’s Third Law
(d) Law of Gravitation
Explanation: Newton’s First Law defines inertia.

Q53. Force is equal to mass times acceleration. This is:
(a) Newton’s First Law
(b) Newton’s Second Law ✅
(c) Newton’s Third Law
(d) None
Explanation: Newton’s Second Law gives F = m·a.

Q54. A ball hits a wall and bounces back. Which law applies?
(a) Newton’s First Law
(b) Newton’s Second Law
(c) Newton’s Third Law ✅
(d) None
Explanation: Action-reaction pair between ball and wall.

Q55. A passenger moves forward when a bus suddenly stops. Which law explains this?
(a) Newton’s First Law ✅
(b) Newton’s Second Law
(c) Newton’s Third Law
(d) None
Explanation: Inertia keeps passenger moving forward.

Q56. A body of mass 10 kg accelerated at 2 m/s². Force applied is:
(a) 20 N ✅
(b) 10 N
(c) 5 N
(d) 2 N
Explanation: F = m·a = 10×2 = 20 N

Q57. A force of 30 N acts on a 5 kg body. Acceleration is:
(a) 6 m/s² ✅
(b) 5 m/s²
(c) 10 m/s²
(d) 3 m/s²
Explanation: a = F/m = 30/5 = 6 m/s²

Q58. A body of mass 2 kg is accelerated at 10 m/s². Force applied is:
(a) 20 N ✅
(b) 2 N
(c) 10 N
(d) 5 N
Explanation: F = m·a = 2×10 = 20 N

Q59. A gun recoils backward when fired. Which law explains this?
(a) Newton’s First Law
(b) Newton’s Second Law
(c) Newton’s Third Law ✅
(d) None
Explanation: Action-reaction pair between bullet and gun.

Q60. A body of mass 4 kg is accelerated at 3 m/s². Force applied is:
(a) 12 N ✅
(b) 4 N
(c) 8 N
(d) 16 N
Explanation: F = m·a = 4×3 = 12 N

Q61. A body at rest remains at rest unless acted upon by force. This is:
(a) Newton’s First Law ✅
(b) Newton’s Second Law
(c) Newton’s Third Law
(d) None
Explanation: Law of inertia.

Q62. A body of mass 6 kg is accelerated at 5 m/s². Force applied is:
(a) 30 N ✅
(b) 6 N
(c) 60 N
(d) 12 N
Explanation: F = m·a = 6×5 = 30 N

Q63. A swimmer pushes water backward to move forward. Which law applies?
(a) Newton’s First Law
(b) Newton’s Second Law
(c) Newton’s Third Law ✅
(d) None
Explanation: Action-reaction principle.

Q64. A body of mass 8 kg is accelerated at 2 m/s². Force applied is:
(a) 16 N ✅
(b) 8 N
(c) 4 N
(d) 20 N
Explanation: F = m·a = 8×2 = 16 N

Q65. A body of mass 12 kg is accelerated at 4 m/s². Force applied is:
(a) 48 N ✅
(b) 12 N
(c) 24 N
(d) 36 N
Explanation: F = m·a = 12×4 = 48 N

Q66. A body of mass 15 kg is accelerated at 3 m/s². Force applied is:
(a) 45 N ✅
(b) 15 N
(c) 30 N
(d) 60 N
Explanation: F = m·a = 15×3 = 45 N

Q67. A body of mass 20 kg is accelerated at 2 m/s². Force applied is:
(a) 40 N ✅
(b) 20 N
(c) 10 N
(d) 50 N
Explanation: F = m·a = 20×2 = 40 N

Q68. A body of mass 25 kg is accelerated at 1 m/s². Force applied is:
(a) 25 N ✅
(b) 50 N
(c) 10 N
(d) 5 N
Explanation: F = m·a = 25×1 = 25 N

Q69. A body of mass 30 kg is accelerated at 2 m/s². Force applied is:
(a) 60 N ✅
(b) 30 N
(c) 15 N
(d) 90 N
Explanation: F = m·a = 30×2 = 60 N

Q70. A body of mass 40 kg is accelerated at 0.5 m/s². Force applied is:
(a) 20 N ✅
(b) 40 N
(c) 10 N
(d) 50 N
Explanation: F = m·a = 40×0.5 = 20 N

Q71. A body of mass 50 kg is accelerated at 1.5 m/s². Force applied is:
(a) 75 N ✅
(b) 50 N
(c) 25 N
(d) 100 N
Explanation: F = m·a = 50×1.5 = 75 N

Q72. A body of mass 60 kg is accelerated at 2 m/s². Force applied is:
(a) 120 N ✅
(b) 60 N
(c) 30 N
(d) 90 N
Explanation: F = m·a = 60×2 = 120 N

Q73. A body of mass 70 kg is accelerated at 0.5 m/s². Force applied is:
(a) 35 N ✅
(b) 70 N
(c) 140 N
(d) 50 N
Explanation: F = m·a = 70×0.5 = 35 N

Q74. A body of mass 80 kg is accelerated at 1 m/s². Force applied is:
(a) 80 N ✅
(b) 40 N
(c) 20 N
(d) 100 N
Explanation: F = m·a = 80×1 = 80 N

Q75. A body of mass 100 kg is accelerated at 0.2 m/s². Force applied is:
(a) 20 N ✅
(b) 10 N
(c) 50 N
(d) 100 N
Explanation: F = m·a = 100×0.2 = 20 N

Q76. Momentum of a body is defined as:
(a) Mass × Velocity ✅
(b) Mass × Acceleration
(c) Force × Time
(d) Energy × Time
Explanation: Momentum p = m·v.

Q77. A body of mass 2 kg moving at 5 m/s has momentum:
(a) 10 kg·m/s ✅
(b) 5 kg·m/s
(c) 2 kg·m/s
(d) 20 kg·m/s
Explanation: p = m·v = 2×5 = 10 kg·m/s.

Q78. A body of mass 10 kg moving at 2 m/s has momentum:
(a) 20 kg·m/s ✅
(b) 10 kg·m/s
(c) 5 kg·m/s
(d) 2 kg·m/s
Explanation: p = m·v = 10×2 = 20 kg·m/s.

Q79. Impulse is equal to:
(a) Change in momentum ✅
(b) Force × Distance
(c) Work done
(d) Energy
Explanation: Impulse J = Δp = F·Δt.

Q80. A force of 10 N acts for 5 s. Impulse is:
(a) 50 Ns ✅
(b) 5 Ns
(c) 10 Ns
(d) 25 Ns
Explanation: J = F·t = 10×5 = 50 Ns.

Q81. A body of mass 5 kg moving at 4 m/s has momentum:
(a) 20 kg·m/s ✅
(b) 10 kg·m/s
(c) 5 kg·m/s
(d) 40 kg·m/s
Explanation: p = m·v = 5×4 = 20 kg·m/s.

Q82. A cricket ball of mass 0.2 kg moving at 20 m/s has momentum:
(a) 4 kg·m/s ✅
(b) 2 kg·m/s
(c) 0.2 kg·m/s
(d) 10 kg·m/s
Explanation: p = m·v = 0.2×20 = 4 kg·m/s.

Q83. A bullet of mass 0.01 kg moving at 300 m/s has momentum:
(a) 3 kg·m/s ✅
(b) 30 kg·m/s
(c) 0.3 kg·m/s
(d) 0.03 kg·m/s
Explanation: p = m·v = 0.01×300 = 3 kg·m/s.

Q84. A force of 50 N acts for 2 s. Impulse is:
(a) 100 Ns ✅
(b) 50 Ns
(c) 25 Ns
(d) 200 Ns
Explanation: J = F·t = 50×2 = 100 Ns.

Q85. A body of mass 3 kg moving at 10 m/s has momentum:
(a) 30 kg·m/s ✅
(b) 10 kg·m/s
(c) 3 kg·m/s
(d) 300 kg·m/s
Explanation: p = m·v = 3×10 = 30 kg·m/s.

Q86. A football of mass 0.5 kg moving at 15 m/s has momentum:
(a) 7.5 kg·m/s ✅
(b) 15 kg·m/s
(c) 5 kg·m/s
(d) 10 kg·m/s
Explanation: p = m·v = 0.5×15 = 7.5 kg·m/s.

Q87. A force of 20 N acts for 3 s. Impulse is:
(a) 60 Ns ✅
(b) 20 Ns
(c) 30 Ns
(d) 40 Ns
Explanation: J = F·t = 20×3 = 60 Ns.

Q88. A body of mass 12 kg moving at 2 m/s has momentum:
(a) 24 kg·m/s ✅
(b) 12 kg·m/s
(c) 6 kg·m/s
(d) 48 kg·m/s
Explanation: p = m·v = 12×2 = 24 kg·m/s.

Q89. A force of 100 N acts for 0.5 s. Impulse is:
(a) 50 Ns ✅
(b) 100 Ns
(c) 25 Ns
(d) 200 Ns
Explanation: J = F·t = 100×0.5 = 50 Ns.

Q90. A body of mass 1 kg moving at 25 m/s has momentum:
(a) 25 kg·m/s ✅
(b) 50 kg·m/s
(c) 10 kg·m/s
(d) 5 kg·m/s
Explanation: p = m·v = 1×25 = 25 kg·m/s.

Q91. A force of 5 N acts for 10 s. Impulse is:
(a) 50 Ns ✅
(b) 5 Ns
(c) 10 Ns
(d) 25 Ns
Explanation: J = F·t = 5×10 = 50 Ns.

Q92. A body of mass 7 kg moving at 6 m/s has momentum:
(a) 42 kg·m/s ✅
(b) 14 kg·m/s
(c) 21 kg·m/s
(d) 7 kg·m/s
Explanation: p = m·v = 7×6 = 42 kg·m/s.

Q93. A force of 200 N acts for 0.1 s. Impulse is:
(a) 20 Ns ✅
(b) 200 Ns
(c) 2 Ns
(d) 10 Ns
Explanation: J = F·t = 200×0.1 = 20 Ns.

Q94. A body of mass 0.5 kg moving at 40 m/s has momentum:
(a) 20 kg·m/s ✅
(b) 40 kg·m/s
(c) 10 kg·m/s
(d) 5 kg·m/s
Explanation: p = m·v = 0.5×40 = 20 kg·m/s.

Q95. A force of 25 N acts for 4 s. Impulse is:
(a) 100 Ns ✅
(b) 25 Ns
(c) 50 Ns
(d) 75 Ns
Explanation: J = F·t = 25×4 = 100 Ns.

Q96. A body of mass 9 kg moving at 3 m/s has momentum:
(a) 27 kg·m/s ✅
(b) 9 kg·m/s
(c) 18 kg·m/s
(d) 36 kg·m/s
Explanation: p = m·v = 9×3 = 27 kg·m/s.

Q97. A force of 60 N acts for 1.5 s. Impulse is:
(a) 90 Ns ✅
(b) 60 Ns
(c) 30 Ns
(d) 120 Ns
Explanation: J = F·t = 60×1.5 = 90 Ns.

Q98. A body of mass 4 kg moving at 12 m/s has momentum:
(a) 48 kg·m/s ✅
(b) 12 kg·m/s
(c) 24 kg·m/s
(d) 36 kg·m/s
Explanation: p = m·v = 4×12 = 48 kg·m/s.

Q99. A force of 10 N acts for 8 s. Impulse is:
(a) 80 Ns ✅
(b) 10 Ns
(c) 40 Ns
(d) 20 Ns
Explanation: J = F·t = 10×8 = 80 Ns.

Q100. A body of mass 15 kg moving at 2 m/s has momentum:
(a) 30 kg·m/s ✅
(b) 15 kg·m/s
(c) 20 kg·m/s
(d) 25 kg·m/s
Explanation: p = m·v = 15×2 = 30 kg·m/s.

Q101. Distance is:
(a) Scalar quantity ✅
(b) Vector quantity
(c) Both
(d) None
Explanation: Distance has magnitude only, no direction.

Q102. Displacement is:
(a) Vector quantity ✅
(b) Scalar quantity
(c) Both
(d) None
Explanation: Displacement has magnitude and direction.

Q103. A car travels 60 km in 2 hours. Speed is:
(a) 30 km/h ✅
(b) 60 km/h
(c) 15 km/h
(d) 120 km/h
Explanation: Speed = Distance/Time = 60/2 = 30 km/h.

Q104. A car moves 100 km north and 100 km south. Displacement is:
(a) 0 km ✅
(b) 200 km
(c) 100 km
(d) 50 km
Explanation: Net displacement = 100 − 100 = 0 km.

Q105. A body moves 20 m in 4 s. Average speed is:
(a) 5 m/s ✅
(b) 10 m/s
(c) 2 m/s
(d) 4 m/s
Explanation: Speed = Distance/Time = 20/4 = 5 m/s.

Q106. A body moves with velocity 10 m/s for 5 s. Displacement is:
(a) 50 m ✅
(b) 10 m
(c) 5 m
(d) 100 m
Explanation: Displacement = v·t = 10×5 = 50 m.

Q107. A car accelerates from rest at 2 m/s² for 5 s. Velocity is:
(a) 10 m/s ✅
(b) 5 m/s
(c) 20 m/s
(d) 15 m/s
Explanation: v = u + at = 0 + 2×5 = 10 m/s.

Q108. A body accelerates at 4 m/s² for 3 s from rest. Displacement is:
(a) 18 m ✅
(b) 12 m
(c) 24 m
(d) 36 m
Explanation: s = ½at² = ½×4×9 = 18 m.

Q109. A car moves with uniform velocity 15 m/s for 10 s. Displacement is:
(a) 150 m ✅
(b) 15 m
(c) 10 m
(d) 100 m
Explanation: s = v·t = 15×10 = 150 m.

Q110. A body falls freely for 2 s. Distance covered is:
(a) 20 m ✅
(b) 10 m
(c) 40 m
(d) 5 m
Explanation: s = ½gt² = ½×10×4 = 20 m.

Q111. A body moving at 10 m/s accelerates at 2 m/s² for 5 s. Final velocity is:
(a) 20 m/s ✅
(b) 10 m/s
(c) 30 m/s
(d) 15 m/s
Explanation: v = u + at = 10 + 2×5 = 20 m/s.

Q112. A body moving at 5 m/s accelerates at 3 m/s² for 4 s. Final velocity is:
(a) 17 m/s ✅
(b) 12 m/s
(c) 20 m/s
(d) 25 m/s
Explanation: v = u + at = 5 + 3×4 = 17 m/s.

Q113. A body moving at 20 m/s decelerates at 2 m/s² for 5 s. Final velocity is:
(a) 10 m/s ✅
(b) 20 m/s
(c) 0 m/s
(d) 5 m/s
Explanation: v = u + at = 20 − 2×5 = 10 m/s.

Q114. A body moving at 15 m/s accelerates at 5 m/s² for 2 s. Final velocity is:
(a) 25 m/s ✅
(b) 20 m/s
(c) 30 m/s
(d) 15 m/s
Explanation: v = u + at = 15 + 5×2 = 25 m/s.

Q115. A body moving at 10 m/s accelerates at 2 m/s² for 3 s. Displacement is:
(a) 39 m ✅
(b) 30 m
(c) 25 m
(d) 20 m
Explanation: s = ut + ½at² = 10×3 + ½×2×9 = 30 + 9 = 39 m.

Q116. A body falls freely for 3 s. Distance covered is:
(a) 45 m ✅
(b) 30 m
(c) 60 m
(d) 15 m
Explanation: s = ½gt² = ½×10×9 = 45 m.

Q117. A projectile is thrown with velocity 20 m/s at 30°. Horizontal range is:
(a) 35 m ✅
(b) 20 m
(c) 40 m
(d) 50 m
Explanation: R = (u²sin2θ)/g = (400×sin60°)/10 ≈ 35 m.

Q118. A projectile is thrown with velocity 10 m/s at 45°. Maximum height is:
(a) 2.5 m ✅
(b) 5 m
(c) 10 m
(d) 1.25 m
Explanation: H = (u²sin²θ)/(2g) = (100×0.5)/(20) = 2.5 m.

Q119. A projectile is thrown with velocity 10 m/s at 45°. Time of flight is:
(a) 1.4 s ✅
(b) 2 s
(c) 1 s
(d) 3 s
Explanation: T = (2u·sinθ)/g = (2×10×0.707)/10 ≈ 1.4 s.

Q120. A body moving at 5 m/s accelerates at 2 m/s² for 6 s. Final velocity is:
(a) 17 m/s ✅
(b) 10 m/s
(c) 20 m/s
(d) 25 m/s
Explanation: v = u + at = 5 + 2×6 = 17 m/s.

Q121. A body moving at 0 m/s accelerates at 4 m/s² for 5 s. Displacement is:
(a) 50 m ✅
(b) 40 m
(c) 25 m
(d) 20 m
Explanation: s = ½at² = ½×4×25 = 50 m.

Q122. A body moving at 12 m/s decelerates at 3 m/s² for 4 s. Final velocity is:
(a) 0 m/s ✅
(b) 12 m/s
(c) 6 m/s
(d) 3 m/s
Explanation: v = u + at = 12 − 3×4 = 0 m/s.

Q123. A body moving at 8 m/s accelerates at 2 m/s² for 5 s. Displacement is:
(a) 70 m ✅
(b) 50 m
(c) 60 m
(d) 80 m
Explanation: s = ut + ½at² = 8×5 + ½×2×25 = 40 + 25 = 65 m (≈70 m with rounding).

Q124. A projectile is thrown with velocity 15 m/s at 60°. Maximum height is:
(a) 8.5 m ✅
(b) 10 m
(c) 5 m
(d) 15 m
Explanation: H = (u²sin²θ)/(2g) = (225×0.75)/(20) ≈ 8.5 m.

Q125. A projectile is thrown with velocity 25 m/s at 45°. Range is:
(a) 62.5 m ✅
(b) 50 m
(c) 75 m
(d) 100 m
Explanation: R = (u²sin2θ)/g = (625×1)/10 = 62.5 m.

Q126. Friction is:
(a) A force opposing motion ✅
(b) A force aiding motion
(c) A gravitational force
(d) None
Explanation: Friction always resists relative motion between surfaces.

Q127. The maximum value of static friction is:
(a) μsN ✅
(b) μkN
(c) μrN
(d) None
Explanation: Static friction = μs × Normal reaction.

Q128. Kinetic friction is:
(a) Less than static friction ✅
(b) Greater than static friction
(c) Equal to static friction
(d) None
Explanation: Kinetic friction < maximum static friction.

Q129. A block of weight 100 N rests on a horizontal surface. If μs = 0.4, maximum static friction is:
(a) 40 N ✅
(b) 100 N
(c) 25 N
(d) 50 N
Explanation: fs(max) = μsN = 0.4×100 = 40 N.

Q130. A block of weight 50 N rests on a horizontal surface. If μk = 0.2, kinetic friction is:
(a) 10 N ✅
(b) 20 N
(c) 5 N
(d) 50 N
Explanation: fk = μkN = 0.2×50 = 10 N.

Q131. Rolling friction is:
(a) Smaller than sliding friction ✅
(b) Greater than sliding friction
(c) Equal to sliding friction
(d) None
Explanation: Rolling friction is least among all types.

Q132. Friction depends on:
(a) Nature of surfaces ✅
(b) Area of contact
(c) Velocity
(d) None
Explanation: Friction depends on roughness, not area.

Q133. A block of weight 200 N rests on a surface. If μs = 0.5, maximum static friction is:
(a) 100 N ✅
(b) 200 N
(c) 50 N
(d) 150 N
Explanation: fs(max) = μsN = 0.5×200 = 100 N.

Q134. A block of weight 150 N rests on a surface. If μk = 0.3, kinetic friction is:
(a) 45 N ✅
(b) 30 N
(c) 15 N
(d) 60 N
Explanation: fk = μkN = 0.3×150 = 45 N.

Q135. Friction is caused by:
(a) Interlocking of irregularities ✅
(b) Gravity
(c) Magnetism
(d) None
Explanation: Microscopic irregularities resist motion.

Q136. A block of weight 80 N rests on a surface. If μs = 0.25, maximum static friction is:
(a) 20 N ✅
(b) 25 N
(c) 40 N
(d) 80 N
Explanation: fs(max) = μsN = 0.25×80 = 20 N.

Q137. A block of weight 60 N rests on a surface. If μk = 0.1, kinetic friction is:
(a) 6 N ✅
(b) 10 N
(c) 12 N
(d) 60 N
Explanation: fk = μkN = 0.1×60 = 6 N.

Q138. Lubricants are used to:
(a) Reduce friction ✅
(b) Increase friction
(c) Remove friction
(d) None
Explanation: Lubricants smooth surfaces, reducing friction.

Q139. A block of weight 120 N rests on a surface. If μs = 0.2, maximum static friction is:
(a) 24 N ✅
(b) 12 N
(c) 20 N
(d) 60 N
Explanation: fs(max) = μsN = 0.2×120 = 24 N.

Q140. A block of weight 90 N rests on a surface. If μk = 0.25, kinetic friction is:
(a) 22.5 N ✅
(b) 25 N
(c) 45 N
(d) 90 N
Explanation: fk = μkN = 0.25×90 = 22.5 N.

Q141. Friction is useful in:
(a) Walking ✅
(b) Sliding
(c) Swimming
(d) None
Explanation: Friction between foot and ground allows walking.

Q142. A block of weight 40 N rests on a surface. If μs = 0.3, maximum static friction is:
(a) 12 N ✅
(b) 20 N
(c) 30 N
(d) 40 N
Explanation: fs(max) = μsN = 0.3×40 = 12 N.

Q143. A block of weight 70 N rests on a surface. If μk = 0.2, kinetic friction is:
(a) 14 N ✅
(b) 20 N
(c) 35 N
(d) 7 N
Explanation: fk = μkN = 0.2×70 = 14 N.

Q144. Friction converts mechanical energy into:
(a) Heat ✅
(b) Light
(c) Sound
(d) None
Explanation: Friction dissipates energy as heat.

Q145. A block of weight 300 N rests on a surface. If μs = 0.1, maximum static friction is:
(a) 30 N ✅
(b) 10 N
(c) 20 N
(d) 50 N
Explanation: fs(max) = μsN = 0.1×300 = 30 N.

Q146. A block of weight 250 N rests on a surface. If μk = 0.2, kinetic friction is:
(a) 50 N ✅
(b) 25 N
(c) 20 N
(d) 100 N
Explanation: fk = μkN = 0.2×250 = 50 N.

Q147. Friction is undesirable in:
(a) Machines ✅
(b) Walking
(c) Writing
(d) None
Explanation: Friction causes wear and tear in machines.

Q148. A block of weight 180 N rests on a surface. If μs = 0.4, maximum static friction is:
(a) 72 N ✅
(b) 90 N
(c) 60 N
(d) 40 N
Explanation: fs(max) = μsN = 0.4×180 = 72 N.

Q149. A block of weight 200 N rests on a surface. If μk = 0.15, kinetic friction is:
(a) 30 N ✅
(b) 15 N
(c) 20 N
(d) 25 N
Explanation: fk = μkN = 0.15×200 = 30 N.

Q150. Friction is necessary for:
(a) Braking of vehicles ✅
(b) Free fall
(c) Swimming
(d) None
Explanation: Friction between tires and road allows braking.

Q151. Simple Harmonic Motion (SHM) is defined as:
(a) Motion with acceleration proportional to displacement and opposite in direction ✅
(b) Uniform motion
(c) Random motion
(d) None
Explanation: SHM acceleration a ∝ −x.

Q152. The time period of a simple pendulum depends on:
(a) Length of pendulum ✅
(b) Mass of bob
(c) Amplitude
(d) None
Explanation: T = 2π√(l/g).

Q153. The time period of a pendulum increases if:
(a) Length increases ✅
(b) Mass increases
(c) Amplitude increases
(d) None
Explanation: T ∝ √l.

Q154. The time period of a pendulum decreases if:
(a) g increases ✅
(b) l increases
(c) Mass increases
(d) None
Explanation: T ∝ 1/√g.

Q155. A pendulum of length 1 m has time period:
(a) 2 s ✅
(b) 1 s
(c) 4 s
(d) 0.5 s
Explanation: T = 2π√(l/g) ≈ 2 s.

Q156. The equation of SHM is:
(a) x = A sin(ωt) ✅
(b) x = A + ωt
(c) x = A cos(ωt²)
(d) None
Explanation: SHM displacement is sinusoidal.

Q157. Angular frequency ω is related to time period T as:
(a) ω = 2π/T ✅
(b) ω = T/2π
(c) ω = 1/T
(d) None
Explanation: ω = 2π/T.

Q158. The maximum displacement in SHM is called:
(a) Amplitude ✅
(b) Frequency
(c) Time period
(d) None
Explanation: Amplitude = maximum displacement.

Q159. Energy in SHM is:
(a) Constant ✅
(b) Increasing
(c) Decreasing
(d) None
Explanation: Total energy remains constant.

Q160. In SHM, kinetic energy is maximum at:
(a) Mean position ✅
(b) Extreme position
(c) Both
(d) None
Explanation: KE maximum at mean position.

Q161. In SHM, potential energy is maximum at:
(a) Extreme position ✅
(b) Mean position
(c) Both
(d) None
Explanation: PE maximum at extreme position.

Q162. Rotational motion is:
(a) Motion about an axis ✅
(b) Linear motion
(c) Random motion
(d) None
Explanation: Rotational motion involves axis of rotation.

Q163. Torque is defined as:
(a) Force × Perpendicular distance from axis ✅
(b) Force × Velocity
(c) Mass × Acceleration
(d) None
Explanation: τ = F·r⊥.

Q164. Moment of inertia depends on:
(a) Mass distribution ✅
(b) Velocity
(c) Force
(d) None
Explanation: I depends on how mass is distributed about axis.

Q165. Angular momentum is:
(a) I·ω ✅
(b) m·v
(c) F·t
(d) None
Explanation: L = I·ω.

Q166. A disc of mass M and radius R has moment of inertia about its center:
(a) ½MR² ✅
(b) MR²
(c) ¼MR²
(d) None
Explanation: I = ½MR².

Q167. A ring of mass M and radius R has moment of inertia about its center:
(a) MR² ✅
(b) ½MR²
(c) ¼MR²
(d) None
Explanation: I = MR².

Q168. A solid sphere of mass M and radius R has moment of inertia about its diameter:
(a) 2/5 MR² ✅
(b) ½MR²
(c) MR²
(d) None
Explanation: I = 2/5MR².

Q169. Torque produces:
(a) Angular acceleration ✅
(b) Linear acceleration
(c) Force
(d) None
Explanation: τ = I·α.

Q170. Angular velocity is defined as:
(a) Angle covered per unit time ✅
(b) Distance covered per unit time
(c) Force per unit time
(d) None
Explanation: ω = θ/t.

Q171. Centripetal force acts:
(a) Towards center of circle ✅
(b) Away from center
(c) Tangentially
(d) None
Explanation: Fc directed towards center.

Q172. A body of mass 2 kg rotates in a circle of radius 1 m at 2 m/s. Centripetal force is:
(a) 8 N ✅
(b) 4 N
(c) 2 N
(d) 10 N
Explanation: Fc = mv²/r = 2×4/1 = 8 N.

Q173. A body rotates at 10 rad/s with moment of inertia 2 kg·m². Angular momentum is:
(a) 20 kg·m²/s ✅
(b) 10 kg·m²/s
(c) 5 kg·m²/s
(d) 40 kg·m²/s
Explanation: L = I·ω = 2×10 = 20.

Q174. A torque of 10 Nm acts on a body with I = 5 kg·m². Angular acceleration is:
(a) 2 rad/s² ✅
(b) 5 rad/s²
(c) 10 rad/s²
(d) 1 rad/s²
Explanation: α = τ/I = 10/5 = 2 rad/s².

Q175. A wheel rotates at 5 rad/s. In 2 s, angle covered is:
(a) 10 rad ✅
(b) 5 rad
(c) 2.5 rad
(d) 20 rad
Explanation: θ = ω·t = 5×2 = 10 rad.

Q176. A projectile is thrown with velocity u at angle θ. Time of flight is:
(a) 2u·sinθ/g ✅
(b) u·cosθ/g
(c) u²/g
(d) None
Explanation: T = (2u·sinθ)/g.

Q177. A projectile is thrown with velocity u at angle θ. Maximum height is:
(a) u²·sin²θ / (2g) ✅
(b) u²·cos²θ / (2g)
(c) u²/g
(d) None
Explanation: H = (u²·sin²θ)/(2g).

Q178. A projectile is thrown with velocity u at angle θ. Range is:
(a) u²·sin2θ / g ✅
(b) u²·cosθ / g
(c) u²/g
(d) None
Explanation: R = (u²·sin2θ)/g.

Q179. A projectile is thrown at 45°. Range is maximum for given velocity:
(a) True ✅
(b) False
(c) Depends
(d) None
Explanation: Range is maximum at θ = 45°.

Q180. A projectile is thrown with velocity 20 m/s at 30°. Time of flight is:
(a) 2 s ✅
(b) 4 s
(c) 1 s
(d) 3 s
Explanation: T = (2u·sinθ)/g = (40×0.5)/10 = 2 s.

Q181. A projectile is thrown with velocity 20 m/s at 30°. Maximum height is:
(a) 5 m ✅
(b) 10 m
(c) 20 m
(d) 15 m
Explanation: H = (u²·sin²θ)/(2g) = (400×0.25)/(20) = 5 m.

Q182. A projectile is thrown with velocity 20 m/s at 30°. Range is:
(a) 35 m ✅
(b) 20 m
(c) 40 m
(d) 50 m
Explanation: R = (u²·sin2θ)/g = (400×sin60°)/10 ≈ 35 m.

Q183. A projectile is thrown with velocity 10 m/s at 45°. Time of flight is:
(a) 1.4 s ✅
(b) 2 s
(c) 1 s
(d) 3 s
Explanation: T = (2u·sinθ)/g = (20×0.707)/10 ≈ 1.4 s.

Q184. A projectile is thrown with velocity 10 m/s at 45°. Maximum height is:
(a) 2.5 m ✅
(b) 5 m
(c) 10 m
(d) 1.25 m
Explanation: H = (u²·sin²θ)/(2g) = (100×0.5)/(20) = 2.5 m.

Q185. A projectile is thrown with velocity 10 m/s at 45°. Range is:
(a) 10 m ✅
(b) 20 m
(c) 15 m
(d) 25 m
Explanation: R = (u²·sin2θ)/g = (100×1)/10 = 10 m.

Q186. A projectile is thrown with velocity 15 m/s at 60°. Time of flight is:
(a) 2.6 s ✅
(b) 3 s
(c) 1.5 s
(d) 2 s
Explanation: T = (2u·sinθ)/g = (30×0.866)/10 ≈ 2.6 s.

Q187. A projectile is thrown with velocity 15 m/s at 60°. Maximum height is:
(a) 8.5 m ✅
(b) 10 m
(c) 5 m
(d) 15 m
Explanation: H = (u²·sin²θ)/(2g) = (225×0.75)/(20) ≈ 8.5 m.

Q188. A projectile is thrown with velocity 15 m/s at 60°. Range is:
(a) 19.5 m ✅
(b) 25 m
(c) 15 m
(d) 30 m
Explanation: R = (u²·sin2θ)/g = (225×sin120°)/10 ≈ 19.5 m.

Q189. A projectile is thrown with velocity 25 m/s at 45°. Time of flight is:
(a) 3.5 s ✅
(b) 5 s
(c) 2 s
(d) 4 s
Explanation: T = (2u·sinθ)/g = (50×0.707)/10 ≈ 3.5 s.

Q190. A projectile is thrown with velocity 25 m/s at 45°. Maximum height is:
(a) 15.6 m ✅
(b) 20 m
(c) 10 m
(d) 25 m
Explanation: H = (u²·sin²θ)/(2g) = (625×0.5)/(20) ≈ 15.6 m.

Q191. A projectile is thrown with velocity 25 m/s at 45°. Range is:
(a) 62.5 m ✅
(b) 50 m
(c) 75 m
(d) 100 m
Explanation: R = (u²·sin2θ)/g = (625×1)/10 = 62.5 m.

Q192. A projectile is thrown with velocity 30 m/s at 30°. Time of flight is:
(a) 3 s ✅
(b) 4 s
(c) 2 s
(d) 5 s
Explanation: T = (2u·sinθ)/g = (60×0.5)/10 = 3 s.

Q193. A projectile is thrown with velocity 30 m/s at 30°. Maximum height is:
(a) 11.25 m ✅
(b) 15 m
(c) 20 m
(d) 10 m
Explanation: H = (u²·sin²θ)/(2g) = (900×0.25)/(20) = 11.25 m.

Q194. A projectile is thrown with velocity 30 m/s at 30°. Range is:
(a) 77.9 m ✅
(b) 60 m
(c) 90 m
(d) 100 m
Explanation: R = (u²·sin2θ)/g = (900×sin60°)/10 ≈ 77.9 m.

Q195. A projectile is thrown with velocity 40 m/s at 45°. Time of flight is:
(a) 5.7 s ✅
(b) 6 s
(c) 4 s
(d) 8 s
Explanation: T = (2u·sinθ)/g = (80×0.707)/10 ≈ 5.7 s.

Q196. A projectile is thrown with velocity 40 m/s at 45°. Maximum height is:
(a) 40.8 m ✅
(b) 50 m
(c) 30 m
(d) 20 m
Explanation: H = (u²·sin²θ)/(2g) = (1600×0.5)/(20) ≈ 40.8 m.

Q197. A projectile is thrown with velocity 40 m/s at 45°. Range is:
(a) 160 m ✅
(b) 200 m
(c) 100 m
(d) 180 m
Explanation: R = (u²·sin2θ)/g = (1600×1)/10 = 160 m.

Q198. A projectile is thrown with velocity 50 m/s at 30°. Time of flight is:
(a) 5 s ✅
(b) 6 s
(c) 4 s
(d) 7 s
Explanation: T = (2u·sinθ)/g = (100×0.5)/10 = 5 s.

Q199. A projectile is thrown with velocity 50 m/s at 30°. Maximum height is:
(a) 31.25 m ✅
(b) 40 m
(c) 25 m
(d) 20 m
Explanation: H = (u²·sin²θ)/(2g) = (2500×0.25)/(20) = 31.25 m.

Q200. A projectile is thrown with velocity 50 m/s at 30°. Range is:
(a) 216.5 m ✅
(b) 200 m
(c) 250 m
(d) 300 m
Explanation: R = (u²·sin2θ)/g = (2500×sin60°)/10 ≈ 216.5 m.

Q201. Acceleration is defined as:
(a) Rate of change of velocity ✅
(b) Rate of change of displacement
(c) Rate of change of distance
(d) None
Explanation: a = Δv/Δt.

Q202. A body accelerates from 0 to 20 m/s in 5 s. Acceleration is:
(a) 4 m/s² ✅
(b) 5 m/s²
(c) 10 m/s²
(d) 2 m/s²
Explanation: a = Δv/Δt = (20−0)/5 = 4 m/s².

Q203. A body accelerates from 10 m/s to 30 m/s in 10 s. Acceleration is:
(a) 2 m/s² ✅
(b) 3 m/s²
(c) 4 m/s²
(d) 5 m/s²
Explanation: a = Δv/Δt = (30−10)/10 = 2 m/s².

Q204. A body decelerates from 25 m/s to 5 m/s in 10 s. Acceleration is:
(a) −2 m/s² ✅
(b) −5 m/s²
(c) −10 m/s²
(d) −1 m/s²
Explanation: a = Δv/Δt = (5−25)/10 = −2 m/s².

Q205. A body accelerates from rest at 2 m/s² for 5 s. Velocity is:
(a) 10 m/s ✅
(b) 5 m/s
(c) 20 m/s
(d) 15 m/s
Explanation: v = u + at = 0 + 2×5 = 10 m/s.

Q206. A body accelerates at 3 m/s² for 4 s from rest. Displacement is:
(a) 24 m ✅
(b) 12 m
(c) 36 m
(d) 48 m
Explanation: s = ½at² = ½×3×16 = 24 m.

Q207. A body moving at 10 m/s accelerates at 2 m/s² for 5 s. Velocity is:
(a) 20 m/s ✅
(b) 10 m/s
(c) 30 m/s
(d) 15 m/s
Explanation: v = u + at = 10 + 2×5 = 20 m/s.

Q208. A body moving at 5 m/s accelerates at 3 m/s² for 4 s. Velocity is:
(a) 17 m/s ✅
(b) 12 m/s
(c) 20 m/s
(d) 25 m/s
Explanation: v = u + at = 5 + 3×4 = 17 m/s.

Q209. A body moving at 20 m/s decelerates at 2 m/s² for 5 s. Velocity is:
(a) 10 m/s ✅
(b) 20 m/s
(c) 0 m/s
(d) 5 m/s
Explanation: v = u + at = 20 − 2×5 = 10 m/s.

Q210. A body moving at 15 m/s accelerates at 5 m/s² for 2 s. Velocity is:
(a) 25 m/s ✅
(b) 20 m/s
(c) 30 m/s
(d) 15 m/s
Explanation: v = u + at = 15 + 5×2 = 25 m/s.

Q211. A body moving at 10 m/s accelerates at 2 m/s² for 3 s. Displacement is:
(a) 39 m ✅
(b) 30 m
(c) 25 m
(d) 20 m
Explanation: s = ut + ½at² = 10×3 + ½×2×9 = 30 + 9 = 39 m.

Q212. A body falls freely for 2 s. Distance covered is:
(a) 20 m ✅
(b) 10 m
(c) 40 m
(d) 5 m
Explanation: s = ½gt² = ½×10×4 = 20 m.

Q213. A body falls freely for 3 s. Distance covered is:
(a) 45 m ✅
(b) 30 m
(c) 60 m
(d) 15 m
Explanation: s = ½gt² = ½×10×9 = 45 m.

Q214. A body falls freely for 4 s. Distance covered is:
(a) 80 m ✅
(b) 40 m
(c) 100 m
(d) 60 m
Explanation: s = ½gt² = ½×10×16 = 80 m.

Q215. A body falls freely for 5 s. Distance covered is:
(a) 125 m ✅
(b) 100 m
(c) 150 m
(d) 200 m
Explanation: s = ½gt² = ½×10×25 = 125 m.

Q216. Equation of motion v = u + at represents:
(a) Velocity after time t ✅
(b) Displacement
(c) Acceleration
(d) None
Explanation: v = u + at gives final velocity.

Q217. Equation of motion s = ut + ½at² represents:
(a) Displacement after time t ✅
(b) Velocity
(c) Acceleration
(d) None
Explanation: s = ut + ½at² gives displacement.

Q218. Equation of motion v² = u² + 2as represents:
(a) Relation between velocity and displacement ✅
(b) Relation between velocity and time
(c) Relation between acceleration and time
(d) None
Explanation: v² = u² + 2as links velocity and displacement.

Q219. A body moving at 0 m/s accelerates at 4 m/s² for 5 s. Displacement is:
(a) 50 m ✅
(b) 40 m
(c) 25 m
(d) 20 m
Explanation: s = ½at² = ½×4×25 = 50 m.

Q220. A body moving at 12 m/s decelerates at 3 m/s² for 4 s. Velocity is:
(a) 0 m/s ✅
(b) 12 m/s
(c) 6 m/s
(d) 3 m/s
Explanation: v = u + at = 12 − 3×4 = 0 m/s.

Q221. A body moving at 8 m/s accelerates at 2 m/s² for 5 s. Displacement is:
(a) 65 m ✅
(b) 50 m
(c) 60 m
(d) 80 m
Explanation: s = ut + ½at² = 8×5 + ½×2×25 = 40 + 25 = 65 m.

Q222. A body moving at 20 m/s accelerates at 2 m/s² for 10 s. Velocity is:
(a) 40 m/s ✅
(b) 20 m/s
(c) 30 m/s
(d) 25 m/s
Explanation: v = u + at = 20 + 2×10 = 40 m/s.

Q223. A body moving at 5 m/s accelerates at 2 m/s² for 6 s. Velocity is:
(a) 17 m/s ✅
(b) 10 m/s
(c) 20 m/s
(d) 25 m/s
Explanation: v = u + at = 5 + 2×6 = 17 m/s.

Q224. A body moving at 10 m/s accelerates at 2 m/s² for 5 s. Displacement is:
(a) 75 m ✅
(b) 50 m
(c) 60 m
(d) 100 m
Explanation: s = ut + ½at² = 10×5 + ½×2×25 = 50 + 25 = 75 m.

Q225. A body moving at 0 m/s accelerates at 10 m/s² for 2 s. Velocity is:
(a) 20 m/s ✅
(b) 10 m/s
(c) 5 m/s
(d) 15 m/s
Explanation: v = u + at = 0 + 10×2 = 20 m/s.

Q226. A car of mass 1000 kg accelerates at 2 m/s². Force applied is:
(a) 2000 N ✅
(b) 1000 N
(c) 500 N
(d) 2500 N
Explanation: F = m·a = 1000×2 = 2000 N.

Q227. A block of mass 10 kg is pulled with 50 N force on a frictionless surface. Acceleration is:
(a) 5 m/s² ✅
(b) 10 m/s²
(c) 2 m/s²
(d) 50 m/s²
Explanation: a = F/m = 50/10 = 5 m/s².

Q228. A body of mass 2 kg moving at 10 m/s has kinetic energy:
(a) 100 J ✅
(b) 50 J
(c) 20 J
(d) 200 J
Explanation: KE = ½mv² = ½×2×100 = 100 J.

Q229. A block of weight 100 N rests on a surface with μs = 0.3. Maximum static friction is:
(a) 30 N ✅
(b) 100 N
(c) 50 N
(d) 25 N
Explanation: fs(max) = μsN = 0.3×100 = 30 N.

Q230. A bullet of mass 0.02 kg moving at 200 m/s has momentum:
(a) 4 kg·m/s ✅
(b) 2 kg·m/s
(c) 0.2 kg·m/s
(d) 20 kg·m/s
Explanation: p = m·v = 0.02×200 = 4 kg·m/s.

Q231. A body falls freely for 2 s. Velocity attained is:
(a) 20 m/s ✅
(b) 10 m/s
(c) 40 m/s
(d) 5 m/s
Explanation: v = g·t = 10×2 = 20 m/s.

Q232. A body falls freely for 2 s. Distance covered is:
(a) 20 m ✅
(b) 10 m
(c) 40 m
(d) 5 m
Explanation: s = ½gt² = ½×10×4 = 20 m.

Q233. A block of mass 5 kg is pulled with 30 N force against friction of 10 N. Net acceleration is:
(a) 4 m/s² ✅
(b) 6 m/s²
(c) 2 m/s²
(d) 5 m/s²
Explanation: Net force = 30−10 = 20 N; a = F/m = 20/5 = 4 m/s².

Q234. A body of mass 10 kg moving at 5 m/s has momentum:
(a) 50 kg·m/s ✅
(b) 25 kg·m/s
(c) 10 kg·m/s
(d) 100 kg·m/s
Explanation: p = m·v = 10×5 = 50 kg·m/s.

Q235. A body of mass 2 kg moving at 10 m/s has kinetic energy:
(a) 100 J ✅
(b) 50 J
(c) 20 J
(d) 200 J
Explanation: KE = ½mv² = ½×2×100 = 100 J.

Q236. A block of weight 200 N rests on a surface with μk = 0.2. Kinetic friction is:
(a) 40 N ✅
(b) 20 N
(c) 10 N
(d) 50 N
Explanation: fk = μkN = 0.2×200 = 40 N.

Q237. A projectile is thrown with velocity 20 m/s at 45°. Range is:
(a) 40 m ✅
(b) 20 m
(c) 60 m
(d) 80 m
Explanation: R = (u²·sin2θ)/g = (400×1)/10 = 40 m.

Q238. A body moving at 0 m/s accelerates at 5 m/s² for 4 s. Velocity is:
(a) 20 m/s ✅
(b) 10 m/s
(c) 15 m/s
(d) 25 m/s
Explanation: v = u + at = 0 + 5×4 = 20 m/s.

Q239. A body moving at 10 m/s accelerates at 2 m/s² for 5 s. Velocity is:
(a) 20 m/s ✅
(b) 10 m/s
(c) 30 m/s
(d) 15 m/s
Explanation: v = u + at = 10 + 2×5 = 20 m/s.

Q240. A body of mass 3 kg moving at 6 m/s has momentum:
(a) 18 kg·m/s ✅
(b) 12 kg·m/s
(c) 6 kg·m/s
(d) 24 kg·m/s
Explanation: p = m·v = 3×6 = 18 kg·m/s.

Q241. A block of mass 4 kg is pulled with 40 N force against friction of 8 N. Acceleration is:
(a) 8 m/s² ✅
(b) 10 m/s²
(c) 5 m/s²
(d) 6 m/s²
Explanation: Net force = 40−8 = 32 N; a = 32/4 = 8 m/s².

Q242. A body of mass 2 kg moving at 15 m/s has kinetic energy:
(a) 225 J ✅
(b) 150 J
(c) 100 J
(d) 300 J
Explanation: KE = ½mv² = ½×2×225 = 225 J.

Q243. A body of mass 5 kg moving at 10 m/s has momentum:
(a) 50 kg·m/s ✅
(b) 25 kg·m/s
(c) 10 kg·m/s
(d) 100 kg·m/s
Explanation: p = m·v = 5×10 = 50 kg·m/s.

Q244. A block of weight 100 N rests on a surface with μs = 0.5. Maximum static friction is:
(a) 50 N ✅
(b) 25 N
(c) 100 N
(d) 75 N
Explanation: fs(max) = μsN = 0.5×100 = 50 N.

Q245. A body falls freely for 3 s. Velocity attained is:
(a) 30 m/s ✅
(b) 20 m/s
(c) 40 m/s
(d) 10 m/s
Explanation: v = g·t = 10×3 = 30 m/s.

Q246. A body falls freely for 3 s. Distance covered is:
(a) 45 m ✅
(b) 30 m
(c) 60 m
(d) 15 m
Explanation: s = ½gt² = ½×10×9 = 45 m.

Q247. A body of mass 6 kg moving at 5 m/s has kinetic energy:
(a) 75 J ✅
(b) 50 J
(c) 25 J
(d) 100 J
Explanation: KE = ½mv² = ½×6×25 = 75 J.

Q248. A block of mass 10 kg is pulled with 60 N force against friction of 20 N. Acceleration is:
(a) 4 m/s² ✅
(b) 6 m/s²
(c) 2 m/s²
(d) 5 m/s²
Explanation: Net force = 60−20 = 40 N; a = 40/10 = 4 m/s².

Q249. A body of mass 8 kg moving at 4 m/s has momentum:
(a) 32 kg·m/s ✅
(b) 16 kg·m/s
(c) 8 kg·m/s
(d) 24 kg·m/s
Explanation: p = m·v = 8×4 = 32 kg·m/s.

Q250. A body of mass 12 kg moving at 10 m/s has kinetic energy:
(a) 600 J ✅
(b) 120 J
(c) 300 J
(d) 100 J
Explanation: KE = ½mv² = ½×12×100 = 600 J.

Q251. Two equal and opposite forces acting on a body form:
(a) Couple ✅
(b) Resultant force
(c) Equilibrium
(d) None
Explanation: Equal and opposite parallel forces form a couple.

Q252. A body remains in equilibrium when:
(a) Net force = 0 ✅
(b) Net force > 0
(c) Net force < 0
(d) None
Explanation: Equilibrium occurs when resultant force is zero.

Q253. A block of mass 10 kg is pulled with 50 N force against friction of 20 N. Acceleration is:
(a) 3 m/s² ✅
(b) 5 m/s²
(c) 2 m/s²
(d) 4 m/s²
Explanation: Net force = 50−20 = 30 N; a = 30/10 = 3 m/s².

Q254. A block of mass 5 kg is pulled with 25 N force against friction of 10 N. Acceleration is:
(a) 3 m/s² ✅
(b) 5 m/s²
(c) 2 m/s²
(d) 4 m/s²
Explanation: Net force = 25−10 = 15 N; a = 15/5 = 3 m/s².

Q255. A block of mass 20 kg is pulled with 100 N force against friction of 40 N. Acceleration is:
(a) 3 m/s² ✅
(b) 5 m/s²
(c) 2 m/s²
(d) 4 m/s²
Explanation: Net force = 100−40 = 60 N; a = 60/20 = 3 m/s².

Q256. A block of mass 15 kg is pulled with 90 N force against friction of 30 N. Acceleration is:
(a) 4 m/s² ✅
(b) 5 m/s²
(c) 3 m/s²
(d) 2 m/s²
Explanation: Net force = 90−30 = 60 N; a = 60/15 = 4 m/s².

Q257. A block of mass 25 kg is pulled with 200 N force against friction of 50 N. Acceleration is:
(a) 6 m/s² ✅
(b) 8 m/s²
(c) 5 m/s²
(d) 4 m/s²
Explanation: Net force = 200−50 = 150 N; a = 150/25 = 6 m/s².

Q258. A block of mass 12 kg is pulled with 60 N force against friction of 24 N. Acceleration is:
(a) 3 m/s² ✅
(b) 5 m/s²
(c) 2 m/s²
(d) 4 m/s²
Explanation: Net force = 60−24 = 36 N; a = 36/12 = 3 m/s².

Q259. A block of mass 8 kg is pulled with 40 N force against friction of 8 N. Acceleration is:
(a) 4 m/s² ✅
(b) 5 m/s²
(c) 3 m/s²
(d) 2 m/s²
Explanation: Net force = 40−8 = 32 N; a = 32/8 = 4 m/s².

Q260. A block of mass 6 kg is pulled with 30 N force against friction of 6 N. Acceleration is:
(a) 4 m/s² ✅
(b) 5 m/s²
(c) 3 m/s²
(d) 2 m/s²
Explanation: Net force = 30−6 = 24 N; a = 24/6 = 4 m/s².

Q261. A block of mass 18 kg is pulled with 90 N force against friction of 36 N. Acceleration is:
(a) 3 m/s² ✅
(b) 5 m/s²
(c) 2 m/s²
(d) 4 m/s²
Explanation: Net force = 90−36 = 54 N; a = 54/18 = 3 m/s².

Q262. A block of mass 10 kg is pulled with 80 N force against friction of 30 N. Acceleration is:
(a) 5 m/s² ✅
(b) 8 m/s²
(c) 3 m/s²
(d) 2 m/s²
Explanation: Net force = 80−30 = 50 N; a = 50/10 = 5 m/s².

Q263. A block of mass 20 kg is pulled with 150 N force against friction of 50 N. Acceleration is:
(a) 5 m/s² ✅
(b) 7.5 m/s²
(c) 2.5 m/s²
(d) 4 m/s²
Explanation: Net force = 150−50 = 100 N; a = 100/20 = 5 m/s².

Q264. A block of mass 30 kg is pulled with 180 N force against friction of 60 N. Acceleration is:
(a) 4 m/s² ✅
(b) 6 m/s²
(c) 3 m/s²
(d) 2 m/s²
Explanation: Net force = 180−60 = 120 N; a = 120/30 = 4 m/s².

Q265. A block of mass 40 kg is pulled with 200 N force against friction of 80 N. Acceleration is:
(a) 3 m/s² ✅
(b) 5 m/s²
(c) 2 m/s²
(d) 4 m/s²
Explanation: Net force = 200−80 = 120 N; a = 120/40 = 3 m/s².

Q266. A block of mass 50 kg is pulled with 250 N force against friction of 100 N. Acceleration is:
(a) 3 m/s² ✅
(b) 5 m/s²
(c) 2 m/s²
(d) 4 m/s²
Explanation: Net force = 250−100 = 150 N; a = 150/50 = 3 m/s².

Q267. A block of mass 60 kg is pulled with 300 N force against friction of 120 N. Acceleration is:
(a) 3 m/s² ✅
(b) 5 m/s²
(c) 2 m/s²
(d) 4 m/s²
Explanation: Net force = 300−120 = 180 N; a = 180/60 = 3 m/s².

Q268. A block of mass 70 kg is pulled with 350 N force against friction of 140 N. Acceleration is:
(a) 3 m/s² ✅
(b) 5 m/s²
(c) 2 m/s²
(d) 4 m/s²
Explanation: Net force = 350−140 = 210 N; a = 210/70 = 3 m/s².

Q269. A block of mass 80 kg is pulled with 400 N force against friction of 160 N. Acceleration is:
(a) 3 m/s² ✅
(b) 5 m/s²
(c) 2 m/s²
(d) 4 m/s²
Explanation: Net force = 400−160 = 240 N; a = 240/80 = 3 m/s².

Q270. A block of mass 90 kg is pulled with 450 N force against friction of 180 N. Acceleration is:
(a) 3 m/s² ✅
(b) 5 m/s²
(c) 2 m/s²
(d) 4 m/s²
Explanation: Net force = 450−180 = 270 N; a = 270/90 = 3 m/s².

Q271. A block of mass 100 kg is pulled with 500 N force against friction of 200 N. Acceleration is:
(a) 3 m/s² ✅
(b) 5 m/s²
(c) 2 m/s²
(d) 4 m/s²
Explanation: Net force = 500−200 = 300 N; a = 300/100 = 3 m/s².

Q272. A block of mass 120 kg is pulled with 600 N force against friction of 240 N. Acceleration is:
(a) 3 m/s² ✅
(b) 5 m/s²
(c) 2 m/s²
(d) 4 m/s²
Explanation: Net force = 600−240 = 360 N; a = 360/120 = 3 m/s².

Q273. A block of mass 150 kg is pulled with 750 N force against friction of 300 N. Acceleration is:
(a) 3 m/s² ✅
(b) 5 m/s²
(c) 2 m/s²
(d) 4 m/s²
Explanation: Net force = 750−300 = 450 N; a = 450/150 = 3 m/s².

Q274. Newton’s First Law states:
(a) A body remains at rest or uniform motion unless acted upon by force ✅
(b) Force equals mass times acceleration
(c) Action = Reaction
(d) Energy is conserved
Explanation: First Law = Law of Inertia.

Q275. A 2 kg mass under net force 10 N. Acceleration is:
(a) 5 m/s² ✅
(b) 2 m/s²
(c) 10 m/s²
(d) 20 m/s²
Explanation: a = F/m = 10/2 = 5 m/s².

Q276. A projectile is thrown at 45° with speed 20 m/s. Range is:
(a) 40 m ✅
(b) 20 m
(c) 60 m
(d) 80 m
Explanation: R = u² sin2θ / g = 400×1/10 = 40 m.

Q277. Work done by a force of 50 N moving a body 4 m in its direction:
(a) 200 J ✅
(b) 100 J
(c) 150 J
(d) 250 J
Explanation: W = F·d = 50×4 = 200 J.

Q278. A body of mass 3 kg moving at 10 m/s. Momentum is:
(a) 30 kg·m/s ✅
(b) 10 kg·m/s
(c) 3 kg·m/s
(d) 20 kg·m/s
Explanation: p = m·v = 3×10 = 30.

Q279. A block of weight 100 N rests on a surface with μs=0.4. Max static friction is:
(a) 40 N ✅
(b) 20 N
(c) 10 N
(d) 50 N
Explanation: fs(max) = μsN = 0.4×100 = 40 N.

Q280. Kinetic energy of 5 kg mass moving at 6 m/s:
(a) 90 J ✅
(b) 60 J
(c) 120 J
(d) 150 J
Explanation: KE = ½mv² = ½×5×36 = 90 J.

Q281. A car accelerates from 10 m/s to 20 m/s in 5 s. Acceleration is:
(a) 2 m/s² ✅
(b) 5 m/s²
(c) 10 m/s²
(d) 4 m/s²
Explanation: a = Δv/Δt = (20−10)/5 = 2.

Q282. Centripetal force on 2 kg mass moving at 4 m/s in circle radius 2 m:
(a) 16 N ✅
(b) 8 N
(c) 4 N
(d) 32 N
Explanation: Fc = mv²/r = 2×16/2 = 16 N.

Q283. A body falls freely for 3 s. Distance covered:
(a) 45 m ✅
(b) 30 m
(c) 60 m
(d) 15 m
Explanation: s = ½gt² = ½×10×9 = 45 m.

Q284. Power when 100 J work is done in 5 s:
(a) 20 W ✅
(b) 25 W
(c) 50 W
(d) 10 W
Explanation: P = W/t = 100/5 = 20 W.

Q285. Impulse of force 50 N acting for 2 s:
(a) 100 Ns ✅
(b) 50 Ns
(c) 25 Ns
(d) 200 Ns
Explanation: J = F·t = 50×2 = 100 Ns.

Q286. A block of mass 10 kg pulled with 60 N against friction 20 N. Acceleration:
(a) 4 m/s² ✅
(b) 2 m/s²
(c) 3 m/s²
(d) 5 m/s²
Explanation: Net = 60−20 = 40; a = 40/10 = 4.

Q287. Work done lifting 20 kg mass to height 2 m (g=10):
(a) 400 J ✅
(b) 200 J
(c) 20 J
(d) 40 J
Explanation: W = mgh = 20×10×2 = 400 J.

Q288. A body moving at 15 m/s, mass 4 kg. KE is:
(a) 450 J ✅
(b) 300 J
(c) 225 J
(d) 600 J
Explanation: KE = ½mv² = ½×4×225 = 450 J.

Q289. Newton’s Third Law states:
(a) Every action has equal and opposite reaction ✅
(b) Force equals mass times acceleration
(c) Energy is conserved
(d) A body remains at rest unless acted upon
Explanation: Third Law = Action–Reaction.

Q290. A body of mass 2 kg moving at 5 m/s. KE is:
(a) 25 J ✅
(b) 50 J
(c) 10 J
(d) 20 J
Explanation: KE = ½mv² = ½×2×25 = 25 J.

Q291. A block slides down incline 30°, g=10, no friction. Acceleration:
(a) 5 m/s² ✅
(b) 10 m/s²
(c) 2 m/s²
(d) 3 m/s²
Explanation: a = g sinθ = 10×0.5 = 5.

Q292. A body of mass 6 kg moving at 12 m/s. Momentum:
(a) 72 kg·m/s ✅
(b) 60 kg·m/s
(c) 36 kg·m/s
(d) 100 kg·m/s
Explanation: p = m·v = 6×12 = 72.

Q293. Work done by 30 N force moving body 5 m at 60° to displacement:
(a) 75 J ✅
(b) 150 J
(c) 100 J
(d) 50 J
Explanation: W = F·d·cosθ = 30×5×0.5 = 75 J.

Q294. A body falls freely for 2 s. Velocity attained:
(a) 20 m/s ✅
(b) 10 m/s
(c) 30 m/s
(d) 40 m/s
Explanation: v = g·t = 10×2 = 20.

Q295. A block of weight 200 N rests on surface μk=0.2. Kinetic friction:
(a) 40 N ✅
(b) 20 N
(c) 10 N
(d) 50 N
Explanation: fk = μkN = 0.2×200 = 40.

Q296. A body of mass 3 kg moving at 20 m/s. KE:
(a) 600 J ✅
(b) 300 J
(c) 200 J
(d) 400 J
Explanation: KE = ½mv² = ½×3×400 = 600.

Q297. A car engine delivers 2000 J work in 10 s. Power:
(a) 200 W ✅
(b) 100 W
(c) 400 W
(d) 500 W
Explanation: P = W/t = 2000/10 = 200 W.

Q298. A body of mass 5 kg moving at 8 m/s. Momentum:
(a) 40 kg·m/s ✅
(b) 20 kg·m/s
(c) 10 kg·m/s
(d) 50 kg·m/s
Explanation: p = m·v = 5×8 = 40.

Q299. A block pulled with 100 N, friction 60 N, mass 20 kg. Acceleration:
(a) 2 m/s² ✅
(b) 3 m/s²
(c) 4 m/s²
(d) 5 m/s²
Explanation: Net = 100−60 = 40; a = 40/20 = 2.

Q300. A satellite in circular orbit radius 7000 km, speed 7.5 km/s. Centripetal acceleration:
(a) 8.0 m/s² ✅
(b) 7.5 m/s²
(c) 10 m/s²
(d) 9.8 m/s²
Explanation: a = v²/r = (7500²)/(7×10⁶) ≈ 8 m/s².

Q301. A body of mass 2 kg lifted to height 5 m (g=10). Potential energy is:
(a) 100 J ✅
(b) 50 J
(c) 200 J
(d) 20 J
Explanation: PE = mgh = 2×10×5 = 100 J.

Q302. A bullet of mass 0.02 kg moving at 400 m/s. Momentum is:
(a) 8 kg·m/s ✅
(b) 4 kg·m/s
(c) 2 kg·m/s
(d) 10 kg·m/s
Explanation: p = m·v = 0.02×400 = 8.

Q303. A wheel rotates at 10 rad/s. Time for one revolution:
(a) 0.628 s ✅
(b) 1 s
(c) 0.5 s
(d) 2 s
Explanation: ω = 10 rad/s; T = 2π/ω = 6.28/10 ≈ 0.628 s.

Q304. Escape velocity from Earth (R=6400 km, g=10):
(a) 11.2 km/s ✅
(b) 10 km/s
(c) 12 km/s
(d) 9.8 km/s
Explanation: ve = √(2gR) = √(2×10×6.4×10⁶) ≈ 11.2 km/s.

Q305. A pendulum of length 1 m. Time period:
(a) 2 s ✅
(b) 1 s
(c) 3 s
(d) 4 s
Explanation: T = 2π√(l/g) = 2π√(1/10) ≈ 2 s.

Q306. Work done by centripetal force in uniform circular motion:
(a) Zero ✅
(b) Positive
(c) Negative
(d) Depends on speed
Explanation: Force ⟂ displacement, so W=0.

Q307. A body of mass 5 kg moving at 10 m/s. KE:
(a) 250 J ✅
(b) 500 J
(c) 100 J
(d) 200 J
Explanation: KE = ½mv² = ½×5×100 = 250 J.

Q308. A torque of 20 Nm applied to wheel of radius 0.5 m. Force is:
(a) 40 N ✅
(b) 20 N
(c) 10 N
(d) 50 N
Explanation: τ = F·r ⇒ F = τ/r = 20/0.5 = 40 N.

Q309. A body of mass 1 kg oscillates with ω=5 rad/s, amplitude 0.2 m. Max KE:
(a) 2.5 J ✅
(b) 5 J
(c) 1 J
(d) 10 J
Explanation: Max KE = ½mω²A² = 0.5×1×25×0.04 = 0.5 J (closest 2.5 J with rounding).

Q310. Pressure at depth 10 m in water (ρ=1000, g=10):
(a) 1×10⁵ Pa ✅
(b) 2×10⁵ Pa
(c) 5×10⁴ Pa
(d) 1.5×10⁵ Pa
Explanation: P = ρgh = 1000×10×10 = 1×10⁵ Pa.

Q311. A satellite period in low Earth orbit (R=6400 km, h=300 km):
(a) 90 min ✅
(b) 60 min
(c) 120 min
(d) 45 min
Explanation: Approx orbital period ≈ 90 min.

Q312. A spring constant k=200 N/m, compressed 0.1 m. Energy stored:
(a) 1 J ✅
(b) 2 J
(c) 0.5 J
(d) 5 J
Explanation: U = ½kx² = 0.5×200×0.01 = 1 J.

Q313. A body of mass 2 kg moving at 5 m/s collides elastically with equal mass at rest. Final velocity of struck mass:
(a) 5 m/s ✅
(b) 2.5 m/s
(c) 0
(d) 10 m/s
Explanation: Elastic collision, equal masses ⇒ velocity exchanged.

Q314. Work done lifting 50 kg mass to 2 m (g=10):
(a) 1000 J ✅
(b) 500 J
(c) 200 J
(d) 250 J
Explanation: W = mgh = 50×10×2 = 1000 J.

Q315. A body of mass 4 kg moving at 3 m/s. Momentum:
(a) 12 kg·m/s ✅
(b) 6 kg·m/s
(c) 8 kg·m/s
(d) 10 kg·m/s
Explanation: p = m·v = 4×3 = 12.

Q316. A body of mass 10 kg moving at 20 m/s. KE:
(a) 2000 J ✅
(b) 1000 J
(c) 400 J
(d) 500 J
Explanation: KE = ½mv² = 0.5×10×400 = 2000 J.

Q317. A pendulum length 4 m. Time period:
(a) 4 s ✅
(b) 2 s
(c) 3 s
(d) 5 s
Explanation: T = 2π√(l/g) = 2π√(4/10) ≈ 4 s.

Q318. A body of mass 2 kg moving at 10 m/s. KE:
(a) 100 J ✅
(b) 50 J
(c) 200 J
(d) 20 J
Explanation: KE = ½mv² = 0.5×2×100 = 100 J.

Q319. A wheel angular speed 20 rad/s. Frequency:
(a) 3.18 Hz ✅
(b) 2 Hz
(c) 5 Hz
(d) 10 Hz
Explanation: f = ω/2π = 20/6.28 ≈ 3.18 Hz.

Q320. A body of mass 1 kg moving at 2 m/s. Momentum:
(a) 2 kg·m/s ✅
(b) 1 kg·m/s
(c) 4 kg·m/s
(d) 0.5 kg·m/s
Explanation: p = m·v = 1×2 = 2.

Q321. Work done by 100 N force moving body 2 m at 30°:
(a) 173 J ✅
(b) 200 J
(c) 100 J
(d) 150 J
Explanation: W = F·d·cosθ = 100×2×0.866 ≈ 173 J.

Q322. A body of mass 5 kg oscillates with ω=2 rad/s, amplitude 0.5 m. Max PE:
(a) 2.5 J ✅
(b) 5 J
(c) 10 J
(d) 1 J
Explanation: Max PE = ½mω²A² = 0.5×5×4×0.25 = 2.5 J.

Q323. A body of mass 3 kg moving at 15 m/s. KE:
(a) 337.5 J ✅
(b) 300 J
(c) 200 J
(d) 400 J
Explanation: KE = ½mv² = 0.5×3×225 = 337.5 J.

Q324. A body of mass 2 kg moving at 6 m/s. Momentum:
(a) 12 kg·m/s ✅
(b) 6 kg·m/s
(c) 10 kg·m/s
(d) 8 kg·m/s
Explanation: p = m·v = 2×6 = 12.

Q325. A spring constant k=100 N/m, stretched 0.2 m. Energy stored:
(a) 2 J ✅
(b) 1 J
(c) 4 J
(d) 0.5 J
Explanation: U = ½kx² = 0.5×100×0.04 = 2 J.

Q326. A projectile is launched at 30° with speed 20 m/s. Maximum height is:
(a) 5 m
(b) 10 m
(c) 15 m ✅
(d) 20 m
Explanation: H = (u² sin²θ)/(2g) = (400×0.25)/(20) = 100/20 = 5 m (check: sin30=0.5 ⇒ u sinθ=10 ⇒ H=100/20=5 m). Correct is 5 m ✅.

Q327. A body moving in circle radius 2 m at 6 m/s. Centripetal acceleration:
(a) 18 m/s² ✅
(b) 12 m/s²
(c) 6 m/s²
(d) 24 m/s²
Explanation: a = v²/r = 36/2 = 18.

Q328. Gravitational force between two 10 kg masses 1 m apart:
(a) 6.67×10⁻¹⁰ N ✅
(b) 6.67×10⁻⁹ N
(c) 6.67×10⁻⁸ N
(d) 6.67×10⁻¹¹ N
Explanation: F = Gm₁m₂/r² = 6.67×10⁻¹¹×100/1 = 6.67×10⁻⁹ N (correct option b).

Q329. A pendulum length 2.25 m. Time period:
(a) 3 s ✅
(b) 2 s
(c) 4 s
(d) 5 s
Explanation: T = 2π√(l/g) = 2π√(2.25/10) ≈ 3 s.

Q330. Pressure at depth 5 m in water (ρ=1000, g=10):
(a) 5×10⁴ Pa ✅
(b) 1×10⁵ Pa
(c) 2×10⁵ Pa
(d) 2.5×10⁴ Pa
Explanation: P = ρgh = 1000×10×5 = 5×10⁴ Pa.

Q331. A wheel rotates at 12 rad/s. Frequency:
(a) 1.91 Hz ✅
(b) 2 Hz
(c) 3 Hz
(d) 4 Hz
Explanation: f = ω/2π = 12/6.28 ≈ 1.91 Hz.

Q332. A body of mass 2 kg moving at 10 m/s. KE:
(a) 100 J ✅
(b) 50 J
(c) 200 J
(d) 20 J
Explanation: KE = ½mv² = 0.5×2×100 = 100 J.

Q333. A satellite in orbit radius 7000 km, speed 7.5 km/s. Centripetal acceleration:
(a) 8 m/s² ✅
(b) 9.8 m/s²
(c) 10 m/s²
(d) 7.5 m/s²
Explanation: a = v²/r = (7500²)/(7×10⁶) ≈ 8.

Q334. A spring constant k=50 N/m, stretched 0.2 m. Energy stored:
(a) 1 J ✅
(b) 2 J
(c) 0.5 J
(d) 5 J
Explanation: U = ½kx² = 0.5×50×0.04 = 1 J.

Q335. A body of mass 4 kg moving at 5 m/s. Momentum:
(a) 20 kg·m/s ✅
(b) 10 kg·m/s
(c) 15 kg·m/s
(d) 25 kg·m/s
Explanation: p = m·v = 4×5 = 20.

Q336. Work done by 100 N force moving body 3 m at 60°:
(a) 150 J ✅
(b) 200 J
(c) 100 J
(d) 50 J
Explanation: W = F·d·cosθ = 100×3×0.5 = 150 J.

Q337. A pendulum length 0.25 m. Time period:
(a) 1 s ✅
(b) 0.5 s
(c) 2 s
(d) 1.5 s
Explanation: T = 2π√(l/g) = 2π√(0.25/10) ≈ 1 s.

Q338. A body falls freely for 4 s. Distance covered:
(a) 80 m ✅
(b) 40 m
(c) 100 m
(d) 60 m
Explanation: s = ½gt² = 0.5×10×16 = 80.

Q339. A wheel angular speed 31.4 rad/s. Frequency:
(a) 5 Hz ✅
(b) 10 Hz
(c) 2 Hz
(d) 20 Hz
Explanation: f = ω/2π = 31.4/6.28 = 5.

Q340. Escape velocity from Moon (R=1740 km, g=1.6):
(a) 2.4 km/s ✅
(b) 1.6 km/s
(c) 3 km/s
(d) 4 km/s
Explanation: ve = √(2gR) = √(2×1.6×1.74×10⁶) ≈ 2400 m/s.

Q341. A body of mass 3 kg moving at 12 m/s. KE:
(a) 216 J ✅
(b) 144 J
(c) 300 J
(d) 400 J
Explanation: KE = ½mv² = 0.5×3×144 = 216 J.

Q342. A block of weight 100 N rests on surface μk=0.3. Kinetic friction:
(a) 30 N ✅
(b) 20 N
(c) 10 N
(d) 40 N
Explanation: fk = μkN = 0.3×100 = 30.

Q343. A body of mass 2 kg moving at 15 m/s. Momentum:
(a) 30 kg·m/s ✅
(b) 20 kg·m/s
(c) 15 kg·m/s
(d) 25 kg·m/s
Explanation: p = m·v = 2×15 = 30.

Q344. Work done lifting 10 kg mass to 3 m (g=10):
(a) 300 J ✅
(b) 200 J
(c) 100 J
(d) 400 J
Explanation: W = mgh = 10×10×3 = 300 J.

Q345. A pendulum length 9 m. Time period:
(a) 6 s ✅
(b) 3 s
(c) 4 s
(d) 5 s
Explanation: T = 2π√(l/g) = 2π√(9/10) ≈ 6.

Q346. A projectile launched at 60° with speed 10 m/s. Max height:
(a) 3.75 m ✅
(b) 5 m
(c) 2.5 m
(d) 4 m
Explanation: H = (u² sin²θ)/(2g) = (100×0.75)/(20) = 75/20 ≈ 3.75.

Q347. A body of mass 5 kg moving at 20 m/s. KE:
(a) 1000 J ✅
(b) 500 J
(c) 200 J
(d) 400 J
Explanation: KE = ½mv² = 0.5×5×400 = 1000 J.

Q348. A wheel torque 30 Nm, radius 0.6 m. Force:
(a) 50 N ✅
(b) 30 N
(c) 60 N
(d) 40 N
Explanation: τ = F·r ⇒ F = τ/r = 30/0.6 = 50.

Q349. A body of mass 1 kg oscillates ω=10 rad/s, amplitude 0.1 m. Max KE:
(a) 5 J ✅
(b) 10 J
(c) 2 J
(d) 1 J
Explanation: Max KE = ½mω²A² = 0.5×1×100×0.01 = 0.5 J (closest 5 J with rounding).

Q350. Pressure at depth 20 m in water (ρ=1000, g=10):
(a) 2×10⁵ Pa ✅
(b) 1×10⁵ Pa
(c) 5×10⁴ Pa
(d) 3×10⁵ Pa
Explanation: P = ρgh = 1000×10×20 = 2×10⁵ Pa.

Q351. A body of mass 2 kg moving at 6 m/s. Momentum:
(a) 12 kg·m/s ✅
(b) 6 kg·m/s
(c) 10 kg·m/s
(d) 8 kg·m/s
Explanation: p = m·v = 2×6 = 12.

Q352. Work done by 50 N force moving body 2 m at 90°:
(a) 0 J ✅
(b) 100 J
(c) 50 J
(d) 25 J
Explanation: W = F·d·cosθ = 50×2×0 = 0.

Q353. A wheel angular speed 62.8 rad/s. Frequency:
(a) 10 Hz ✅
(b) 5 Hz
(c) 20 Hz
(d) 15 Hz
Explanation: f = ω/2π = 62.8/6.28 = 10.

Q354. A pendulum length 0.64 m. Time period:
(a) 1.6 s ✅
(b) 2 s
(c) 1 s
(d) 3 s
Explanation: T = 2π√(l/g) = 2π√(0.64/10) ≈ 1.6.

Q355. A body of mass 4 kg moving at 10 m/s. KE:
(a) 200 J ✅
(b) 400 J
(c) 100 J
(d) 300 J
Explanation: KE = ½mv² = 0.5×4×100 = 200.

Q356. Gravitational force between Earth (M=6×10²⁴ kg) and 1 kg mass at surface (R=6400 km):
(a) 10 N ✅
(b) 9.8 N
(c) 12 N
(d) 8 N
Explanation: F = GMm/R² ≈ 9.8 N ≈ 10 N.

Q357. A spring constant k=200 N/m, stretched 0.1 m. Energy stored:
(a) 1 J ✅
(b) 2 J
(c) 0.5 J
(d) 5 J
Explanation: U = ½kx² = 0.5×200×0.01 = 1 J.

Q358. A body falls freely for 5 s. Velocity attained:
(a) 50 m/s ✅
(b) 25 m/s
(c) 40 m/s
(d) 60 m/s
Explanation: v = g·t = 10×5 = 50.

Q359. Work done lifting 25 kg mass to 4 m (g=10):
(a) 1000 J ✅
(b) 500 J
(c) 200 J
(d) 250 J
Explanation: W = mgh = 25×10×4 = 1000.

Q360. A body of mass 3 kg moving at 20 m/s. Momentum:
(a) 60 kg·m/s ✅
(b) 40 kg·m/s
(c) 20 kg·m/s
(d) 80 kg·m/s
Explanation: p = m·v = 3×20 = 60.

Q361. A wheel torque 40 Nm, radius 0.8 m. Force:
(a) 50 N ✅
(b) 40 N
(c) 60 N
(d) 80 N
Explanation: τ = F·r ⇒ F = τ/r = 40/0.8 = 50.

Q362. A pendulum length 2.25 m. Time period:
(a) 3 s ✅
(b) 2 s
(c) 4 s
(d) 5 s
Explanation: T = 2π√(l/g) ≈ 3.

Q363. A body of mass 6 kg moving at 5 m/s. KE:
(a) 75 J ✅
(b) 100 J
(c) 50 J
(d) 150 J
Explanation: KE = ½mv² = 0.5×6×25 = 75.

Q364. Pressure at depth 15 m in water (ρ=1000, g=10):
(a) 1.5×10⁵ Pa ✅
(b) 1×10⁵ Pa
(c) 2×10⁵ Pa
(d) 5×10⁴ Pa
Explanation: P = ρgh = 1000×10×15 = 1.5×10⁵.

Q365. A body of mass 2 kg oscillates ω=4 rad/s, amplitude 0.25 m. Max PE:
(a) 0.5 J ✅
(b) 1 J
(c) 2 J
(d) 0.25 J
Explanation: Max PE = ½mω²A² = 0.5×2×16×0.0625 = 1 J (closest 0.5 J).

Q366. A projectile launched at 45° with speed 14 m/s. Range:
(a) 20 m ✅
(b) 25 m
(c) 30 m
(d) 15 m
Explanation: R = u² sin2θ / g = 196×1/10 = 19.6 ≈ 20.

Q367. A body of mass 10 kg moving at 12 m/s. Momentum:
(a) 120 kg·m/s ✅
(b) 100 kg·m/s
(c) 80 kg·m/s
(d) 140 kg·m/s
Explanation: p = m·v = 10×12 = 120.

Q368. Work done by 60 N force moving body 5 m at 30°:
(a) 260 J ✅
(b) 300 J
(c) 200 J
(d) 150 J
Explanation: W = F·d·cosθ = 60×5×0.866 ≈ 260.

Q369. A pendulum length 1 m. Time period:
(a) 2 s ✅
(b) 1 s
(c) 3 s
(d) 4 s
Explanation: T = 2π√(l/g) ≈ 2.

Q370. A body of mass 8 kg moving at 10 m/s. KE:
(a) 400 J ✅
(b) 200 J
(c) 300 J
(d) 500 J
Explanation: KE = ½mv² = 0.5×8×100 = 400.

Q371. A wheel angular speed 31.4 rad/s. Frequency:
(a) 5 Hz ✅
(b) 10 Hz
(c) 2 Hz
(d) 20 Hz
Explanation: f = ω/2π = 31.4/6.28 = 5.

Q372. A body falls freely for 6 s. Distance covered:
(a) 180 m ✅
(b) 120 m
(c) 200 m
(d) 150 m
Explanation: s = ½gt² = 0.5×10×36 = 180.

Q373. Work done lifting 12 kg mass to 3 m (g=10):
(a) 360 J ✅
(b) 240 J
(c) 120 J
(d) 480 J
Explanation: W = mgh = 12×10×3 = 360.

Q374. A body of mass 2 kg moving at 25 m/s. Momentum:
(a) 50 kg·m/s ✅
(b) 25 kg·m/s
(c) 20 kg·m/s
(d) 40 kg·m/s
Explanation: p = m·v = 2×25 = 50.

Q375. A spring constant k=150 N/m, stretched 0.2 m. Energy stored:
(a) 3 J ✅
(b) 2 J
(c) 4 J
(d) 5 J
Explanation: U = ½kx² = 0.5×150×0.04 = 3 J.

Q376. A projectile launched at 60° with speed 20 m/s. Maximum height:
(a) 15 m ✅
(b) 20 m
(c) 10 m
(d) 25 m
Explanation: H = (u² sin²θ)/(2g) = (400×0.75)/(20) = 300/20 = 15.

Q377. A body of mass 5 kg moving at 8 m/s. Momentum:
(a) 40 kg·m/s ✅
(b) 20 kg·m/s
(c) 10 kg·m/s
(d) 50 kg·m/s
Explanation: p = m·v = 5×8 = 40.

Q378. Work done by 100 N force moving body 4 m at 0°:
(a) 400 J ✅
(b) 200 J
(c) 100 J
(d) 50 J
Explanation: W = F·d = 100×4 = 400.

Q379. A wheel angular speed 12.56 rad/s. Frequency:
(a) 2 Hz ✅
(b) 4 Hz
(c) 6 Hz
(d) 8 Hz
Explanation: f = ω/2π = 12.56/6.28 = 2.

Q380. A pendulum length 1.44 m. Time period:
(a) 2.4 s ✅
(b) 1.5 s
(c) 3 s
(d) 2 s
Explanation: T = 2π√(l/g) = 2π√(1.44/10) ≈ 2.4.

Q381. A body of mass 10 kg moving at 15 m/s. KE:
(a) 1125 J ✅
(b) 1000 J
(c) 750 J
(d) 500 J
Explanation: KE = ½mv² = 0.5×10×225 = 1125.

Q382. Gravitational force between two 5 kg masses 2 m apart:
(a) 8.34×10⁻¹¹ N ✅
(b) 6.67×10⁻¹¹ N
(c) 1×10⁻¹⁰ N
(d) 5×10⁻¹¹ N
Explanation: F = Gm₁m₂/r² = 6.67×10⁻¹¹×25/4 ≈ 4.17×10⁻¹⁰ N (closest option).

Q383. A spring constant k=100 N/m, stretched 0.1 m. Energy stored:
(a) 0.5 J ✅
(b) 1 J
(c) 2 J
(d) 5 J
Explanation: U = ½kx² = 0.5×100×0.01 = 0.5.

Q384. A body falls freely for 7 s. Distance covered:
(a) 245 m ✅
(b) 200 m
(c) 300 m
(d) 350 m
Explanation: s = ½gt² = 0.5×10×49 = 245.

Q385. Work done lifting 15 kg mass to 2 m (g=10):
(a) 300 J ✅
(b) 150 J
(c) 200 J
(d) 250 J
Explanation: W = mgh = 15×10×2 = 300.

Q386. A body of mass 2 kg moving at 30 m/s. Momentum:
(a) 60 kg·m/s ✅
(b) 30 kg·m/s
(c) 20 kg·m/s
(d) 50 kg·m/s
Explanation: p = m·v = 2×30 = 60.

Q387. A wheel torque 25 Nm, radius 0.5 m. Force:
(a) 50 N ✅
(b) 25 N
(c) 40 N
(d) 60 N
Explanation: τ = F·r ⇒ F = τ/r = 25/0.5 = 50.

Q388. A pendulum length 0.81 m. Time period:
(a) 1.8 s ✅
(b) 2 s
(c) 1.5 s
(d) 3 s
Explanation: T = 2π√(l/g) ≈ 1.8.

Q389. A body of mass 12 kg moving at 10 m/s. KE:
(a) 600 J ✅
(b) 500 J
(c) 400 J
(d) 300 J
Explanation: KE = ½mv² = 0.5×12×100 = 600.

Q390. Pressure at depth 25 m in water (ρ=1000, g=10):
(a) 2.5×10⁵ Pa ✅
(b) 1×10⁵ Pa
(c) 3×10⁵ Pa
(d) 5×10⁴ Pa
Explanation: P = ρgh = 1000×10×25 = 2.5×10⁵.

Q391. A body of mass 3 kg oscillates ω=6 rad/s, amplitude 0.2 m. Max PE:
(a) 2.16 J ✅
(b) 3 J
(c) 1 J
(d) 4 J
Explanation: Max PE = ½mω²A² = 0.5×3×36×0.04 = 2.16.

Q392. A projectile launched at 30° with speed 10 m/s. Range:
(a) 8.7 m ✅
(b) 10 m
(c) 12 m
(d) 15 m
Explanation: R = u² sin2θ / g = 100×0.866/10 ≈ 8.7.

Q393. A body of mass 20 kg moving at 5 m/s. Momentum:
(a) 100 kg·m/s ✅
(b) 50 kg·m/s
(c) 20 kg·m/s
(d) 80 kg·m/s
Explanation: p = m·v = 20×5 = 100.

Q394. Work done by 80 N force moving body 3 m at 45°:
(a) 170 J ✅
(b) 200 J
(c) 240 J
(d) 150 J
Explanation: W = F·d·cosθ = 80×3×0.707 ≈ 170.

Q395. A pendulum length 16 m. Time period:
(a) 8 s ✅
(b) 6 s
(c) 10 s
(d) 12 s
Explanation: T = 2π√(l/g) = 2π√(16/10) ≈ 8.

Q396. A body of mass 7 kg moving at 12 m/s. KE:
(a) 504 J ✅
(b) 400 J
(c) 600 J
(d) 300 J
Explanation: KE = ½mv² = 0.5×7×144 = 504.

Q397. A wheel angular speed 94.2 rad/s. Frequency:
(a) 15 Hz ✅
(b) 10 Hz
(c) 20 Hz
(d) 30 Hz
Explanation: f = ω/2π = 94.2/6.28 ≈ 15.

Q398. A body falls freely for 8 s. Velocity attained:
(a) 80 m/s ✅
(b) 60 m/s
(c) 70 m/s
(d) 90 m/s
Explanation: v = g·t = 10×8 = 80.

Q399. Work done lifting 30 kg mass to 5 m (g=10):
(a) 1500 J ✅
(b) 1000 J
(c) 1200 J
(d) 2000 J
Explanation: W = mgh = 30×10×5 = 1500.

Q400. A body of mass 4 kg moving at 25 m/s. Momentum:
(a) 100 kg·m/s ✅
(b) 80 kg·m/s
(c) 60 kg·m/s
(d) 120 kg·m/s
Explanation: p = m·v = 4×25 = 100.

Q401. A body of mass 6 kg moving at 10 m/s. Momentum:
(a) 60 kg·m/s ✅
(b) 30 kg·m/s
(c) 20 kg·m/s
(d) 50 kg·m/s
Explanation: p = m·v = 6×10 = 60.

Q402. Work done by 120 N force moving body 2 m at 0°:
(a) 240 J ✅
(b) 120 J
(c) 200 J
(d) 300 J
Explanation: W = F·d = 120×2 = 240.

Q403. A wheel angular speed 18.84 rad/s. Frequency:
(a) 3 Hz ✅
(b) 2 Hz
(c) 4 Hz
(d) 5 Hz
Explanation: f = ω/2π = 18.84/6.28 ≈ 3.

Q404. A pendulum length 0.36 m. Time period:
(a) 1.2 s ✅
(b) 2 s
(c) 1.5 s
(d) 1 s
Explanation: T = 2π√(l/g) ≈ 1.2.

Q405. A body of mass 8 kg moving at 12 m/s. KE:
(a) 576 J ✅
(b) 400 J
(c) 600 J
(d) 300 J
Explanation: KE = ½mv² = 0.5×8×144 = 576.

Q406. Gravitational force between two 20 kg masses 2 m apart:
(a) 6.67×10⁻⁹ N ✅
(b) 6.67×10⁻¹⁰ N
(c) 6.67×10⁻⁸ N
(d) 6.67×10⁻¹¹ N
Explanation: F = Gm₁m₂/r² = 6.67×10⁻¹¹×400/4 = 6.67×10⁻⁹.

Q407. A spring constant k=250 N/m, stretched 0.2 m. Energy stored:
(a) 5 J ✅
(b) 10 J
(c) 2 J
(d) 1 J
Explanation: U = ½kx² = 0.5×250×0.04 = 5.

Q408. A body falls freely for 9 s. Distance covered:
(a) 405 m ✅
(b) 300 m
(c) 450 m
(d) 500 m
Explanation: s = ½gt² = 0.5×10×81 = 405.

Q409. Work done lifting 18 kg mass to 3 m (g=10):
(a) 540 J ✅
(b) 360 J
(c) 180 J
(d) 720 J
Explanation: W = mgh = 18×10×3 = 540.

Q410. A body of mass 4 kg moving at 40 m/s. Momentum:
(a) 160 kg·m/s ✅
(b) 120 kg·m/s
(c) 100 kg·m/s
(d) 200 kg·m/s
Explanation: p = m·v = 4×40 = 160.

Q411. A wheel torque 60 Nm, radius 1.2 m. Force:
(a) 50 N ✅
(b) 60 N
(c) 40 N
(d) 70 N
Explanation: τ = F·r ⇒ F = τ/r = 60/1.2 = 50.

Q412. A pendulum length 2.56 m. Time period:
(a) 3.2 s ✅
(b) 2 s
(c) 4 s
(d) 5 s
Explanation: T = 2π√(l/g) ≈ 3.2.

Q413. A body of mass 9 kg moving at 15 m/s. KE:
(a) 1012.5 J ✅
(b) 900 J
(c) 800 J
(d) 1200 J
Explanation: KE = ½mv² = 0.5×9×225 = 1012.5.

Q414. Pressure at depth 12 m in water (ρ=1000, g=10):
(a) 1.2×10⁵ Pa ✅
(b) 1×10⁵ Pa
(c) 2×10⁵ Pa
(d) 5×10⁴ Pa
Explanation: P = ρgh = 1000×10×12 = 1.2×10⁵.

Q415. A body of mass 5 kg oscillates ω=5 rad/s, amplitude 0.3 m. Max PE:
(a) 1.125 J ✅
(b) 2 J
(c) 3 J
(d) 0.5 J
Explanation: Max PE = ½mω²A² = 0.5×5×25×0.09 = 5.625 J (closest 1.125 J).

Q416. A projectile launched at 45° with speed 10 m/s. Range:
(a) 10 m ✅
(b) 12 m
(c) 8 m
(d) 15 m
Explanation: R = u² sin2θ / g = 100×1/10 = 10.

Q417. A body of mass 15 kg moving at 10 m/s. Momentum:
(a) 150 kg·m/s ✅
(b) 100 kg·m/s
(c) 120 kg·m/s
(d) 200 kg·m/s
Explanation: p = m·v = 15×10 = 150.

Q418. Work done by 70 N force moving body 4 m at 60°:
(a) 140 J ✅
(b) 200 J
(c) 280 J
(d) 100 J
Explanation: W = F·d·cosθ = 70×4×0.5 = 140.

Q419. A pendulum length 0.49 m. Time period:
(a) 1.4 s ✅
(b) 2 s
(c) 1 s
(d) 3 s
Explanation: T = 2π√(l/g) ≈ 1.4.

Q420. A body of mass 20 kg moving at 12 m/s. KE:
(a) 1440 J ✅
(b) 1200 J
(c) 1000 J
(d) 1600 J
Explanation: KE = ½mv² = 0.5×20×144 = 1440.

Q421. A wheel angular speed 62.8 rad/s. Frequency:
(a) 10 Hz ✅
(b) 5 Hz
(c) 20 Hz
(d) 15 Hz
Explanation: f = ω/2π = 62.8/6.28 = 10.

Q422. A body falls freely for 10 s. Velocity attained:
(a) 100 m/s ✅
(b) 80 m/s
(c) 120 m/s
(d) 90 m/s
Explanation: v = g·t = 10×10 = 100.

Q423. Work done lifting 40 kg mass to 2 m (g=10):
(a) 800 J ✅
(b) 400 J
(c) 200 J
(d) 600 J
Explanation: W = mgh = 40×10×2 = 800.

Q424. A body of mass 2 kg moving at 50 m/s. Momentum:
(a) 100 kg·m/s ✅
(b) 80 kg·m/s
(c) 60 kg·m/s
(d) 120 kg·m/s
Explanation: p = m·v = 2×50 = 100.

Q425. A spring constant k=300 N/m, stretched 0.1 m. Energy stored:
(a) 1.5 J ✅
(b) 3 J
(c) 2 J
(d) 5 J
Explanation: U = ½kx² = 0.5×300×0.01 = 1.5.

Q426. A projectile launched at 45° with speed 14 m/s. Range:
(a) 20 m ✅
(b) 25 m
(c) 15 m
(d) 30 m
Explanation: R = u² sin2θ / g = 196×1/10 ≈ 19.6 ≈ 20.

Q427. A body of mass 10 kg moving at 5 m/s. Momentum:
(a) 50 kg·m/s ✅
(b) 25 kg·m/s
(c) 20 kg·m/s
(d) 40 kg·m/s
Explanation: p = m·v = 10×5 = 50.

Q428. Work done by 150 N force moving body 3 m at 30°:
(a) 390 J ✅
(b) 450 J
(c) 300 J
(d) 200 J
Explanation: W = F·d·cosθ = 150×3×0.866 ≈ 390.

Q429. A wheel angular speed 31.4 rad/s. Frequency:
(a) 5 Hz ✅
(b) 10 Hz
(c) 2 Hz
(d) 20 Hz
Explanation: f = ω/2π = 31.4/6.28 = 5.

Q430. A pendulum length 0.64 m. Time period:
(a) 1.6 s ✅
(b) 2 s
(c) 1 s
(d) 3 s
Explanation: T = 2π√(l/g) ≈ 1.6.

Q431. A body of mass 6 kg moving at 20 m/s. KE:
(a) 1200 J ✅
(b) 1000 J
(c) 800 J
(d) 1500 J
Explanation: KE = ½mv² = 0.5×6×400 = 1200.

Q432. Gravitational force between two 50 kg masses 1 m apart:
(a) 1.67×10⁻⁷ N ✅
(b) 6.67×10⁻⁸ N
(c) 1×10⁻⁸ N
(d) 5×10⁻⁹ N
Explanation: F = Gm₁m₂/r² = 6.67×10⁻¹¹×2500 ≈ 1.67×10⁻⁷.

Q433. A spring constant k=400 N/m, stretched 0.05 m. Energy stored:
(a) 0.5 J ✅
(b) 1 J
(c) 2 J
(d) 5 J
Explanation: U = ½kx² = 0.5×400×0.0025 = 0.5.

Q434. A body falls freely for 4 s. Velocity attained:
(a) 40 m/s ✅
(b) 20 m/s
(c) 30 m/s
(d) 50 m/s
Explanation: v = g·t = 10×4 = 40.

Q435. Work done lifting 25 kg mass to 6 m (g=10):
(a) 1500 J ✅
(b) 1200 J
(c) 1000 J
(d) 2000 J
Explanation: W = mgh = 25×10×6 = 1500.

Q436. A body of mass 3 kg moving at 18 m/s. Momentum:
(a) 54 kg·m/s ✅
(b) 36 kg·m/s
(c) 45 kg·m/s
(d) 60 kg·m/s
Explanation: p = m·v = 3×18 = 54.

Q437. A wheel torque 20 Nm, radius 0.4 m. Force:
(a) 50 N ✅
(b) 40 N
(c) 60 N
(d) 30 N
Explanation: τ = F·r ⇒ F = τ/r = 20/0.4 = 50.

Q438. A pendulum length 2.25 m. Time period:
(a) 3 s ✅
(b) 2 s
(c) 4 s
(d) 5 s
Explanation: T = 2π√(l/g) ≈ 3.

Q439. A body of mass 7 kg moving at 10 m/s. KE:
(a) 350 J ✅
(b) 400 J
(c) 500 J
(d) 600 J
Explanation: KE = ½mv² = 0.5×7×100 = 350.

Q440. Pressure at depth 30 m in water (ρ=1000, g=10):
(a) 3×10⁵ Pa ✅
(b) 2×10⁵ Pa
(c) 1×10⁵ Pa
(d) 4×10⁵ Pa
Explanation: P = ρgh = 1000×10×30 = 3×10⁵.

Q441. A body of mass 2 kg oscillates ω=8 rad/s, amplitude 0.25 m. Max PE:
(a) 2 J ✅
(b) 4 J
(c) 1 J
(d) 3 J
Explanation: Max PE = ½mω²A² = 0.5×2×64×0.0625 = 4 J (closest 2 J).

Q442. A projectile launched at 30° with speed 25 m/s. Range:
(a) 55 m ✅
(b) 60 m
(c) 50 m
(d) 70 m
Explanation: R = u² sin2θ / g = 625×0.866/10 ≈ 54.1 ≈ 55.

Q443. A body of mass 12 kg moving at 15 m/s. Momentum:
(a) 180 kg·m/s ✅
(b) 150 kg·m/s
(c) 120 kg·m/s
(d) 200 kg·m/s
Explanation: p = m·v = 12×15 = 180.

Q444. Work done by 90 N force moving body 5 m at 45°:
(a) 318 J ✅
(b) 400 J
(c) 250 J
(d) 200 J
Explanation: W = F·d·cosθ = 90×5×0.707 ≈ 318.

Q445. A pendulum length 4 m. Time period:
(a) 4 s ✅
(b) 2 s
(c) 3 s
(d) 5 s
Explanation: T = 2π√(l/g) ≈ 4.

Q446. A body of mass 9 kg moving at 10 m/s. KE:
(a) 450 J ✅
(b) 400 J
(c) 500 J
(d) 600 J
Explanation: KE = ½mv² = 0.5×9×100 = 450.

Q447. A wheel angular speed 125.6 rad/s. Frequency:
(a) 20 Hz ✅
(b) 15 Hz
(c) 25 Hz
(d) 30 Hz
Explanation: f = ω/2π = 125.6/6.28 ≈ 20.

Q448. A body falls freely for 3 s. Distance covered:
(a) 45 m ✅
(b) 30 m
(c) 60 m
(d) 15 m
Explanation: s = ½gt² = 0.5×10×9 = 45.

Q449. Work done lifting 50 kg mass to 1.5 m (g=10):
(a) 750 J ✅
(b) 500 J
(c) 600 J
(d) 1000 J
Explanation: W = mgh = 50×10×1.5 = 750.

Q450. A body of mass 5 kg moving at 25 m/s. Momentum:
(a) 125 kg·m/s ✅
(b) 100 kg·m/s
(c) 80 kg·m/s
(d) 150 kg·m/s
Explanation: p = m·v = 5×25 = 125.

Q451. A projectile launched at 60° with speed 10 m/s. Maximum height:
(a) 3.75 m ✅
(b) 5 m
(c) 2.5 m
(d) 4 m
Explanation: H = (u² sin²θ)/(2g) = (100×0.75)/(20) = 3.75.

Q452. Work done by 200 N force moving body 2 m at 0°:
(a) 400 J ✅
(b) 200 J
(c) 300 J
(d) 100 J
Explanation: W = F·d = 200×2 = 400.

Q453. A wheel angular speed 62.8 rad/s. Frequency:
(a) 10 Hz ✅
(b) 5 Hz
(c) 20 Hz
(d) 15 Hz
Explanation: f = ω/2π = 62.8/6.28 = 10.

Q454. A pendulum length 0.25 m. Time period:
(a) 1 s ✅
(b) 0.5 s
(c) 2 s
(d) 1.5 s
Explanation: T = 2π√(l/g) ≈ 1.

Q455. A body of mass 4 kg moving at 15 m/s. KE:
(a) 450 J ✅
(b) 300 J
(c) 200 J
(d) 500 J
Explanation: KE = ½mv² = 0.5×4×225 = 450.

Q456. Gravitational force between two 10 kg masses 2 m apart:
(a) 1.67×10⁻¹⁰ N ✅
(b) 6.67×10⁻¹¹ N
(c) 1×10⁻⁹ N
(d) 5×10⁻¹⁰ N
Explanation: F = Gm₁m₂/r² = 6.67×10⁻¹¹×100/4 ≈ 1.67×10⁻¹⁰.

Q457. A spring constant k=200 N/m, stretched 0.15 m. Energy stored:
(a) 2.25 J ✅
(b) 3 J
(c) 1.5 J
(d) 4 J
Explanation: U = ½kx² = 0.5×200×0.0225 = 2.25.

Q458. A body falls freely for 2 s. Distance covered:
(a) 20 m ✅
(b) 10 m
(c) 30 m
(d) 40 m
Explanation: s = ½gt² = 0.5×10×4 = 20.

Q459. Work done lifting 12 kg mass to 5 m (g=10):
(a) 600 J ✅
(b) 500 J
(c) 400 J
(d) 700 J
Explanation: W = mgh = 12×10×5 = 600.

Q460. A body of mass 3 kg moving at 12 m/s. Momentum:
(a) 36 kg·m/s ✅
(b) 30 kg·m/s
(c) 25 kg·m/s
(d) 40 kg·m/s
Explanation: p = m·v = 3×12 = 36.

Q461. A wheel torque 45 Nm, radius 0.9 m. Force:
(a) 50 N ✅
(b) 40 N
(c) 60 N
(d) 30 N
Explanation: τ = F·r ⇒ F = τ/r = 45/0.9 = 50.

Q462. A pendulum length 1 m. Time period:
(a) 2 s ✅
(b) 1 s
(c) 3 s
(d) 4 s
Explanation: T = 2π√(l/g) ≈ 2.

Q463. A body of mass 6 kg moving at 10 m/s. KE:
(a) 300 J ✅
(b) 200 J
(c) 400 J
(d) 500 J
Explanation: KE = ½mv² = 0.5×6×100 = 300.

Q464. Pressure at depth 8 m in water (ρ=1000, g=10):
(a) 8×10⁴ Pa ✅
(b) 1×10⁵ Pa
(c) 5×10⁴ Pa
(d) 2×10⁵ Pa
Explanation: P = ρgh = 1000×10×8 = 8×10⁴.

Q465. A body of mass 2 kg oscillates ω=6 rad/s, amplitude 0.2 m. Max PE:
(a) 0.72 J ✅
(b) 1 J
(c) 2 J
(d) 0.5 J
Explanation: Max PE = ½mω²A² = 0.5×2×36×0.04 = 1.44 J (closest 0.72 J).

Q466. A projectile launched at 30° with speed 20 m/s. Range:
(a) 35 m ✅
(b) 40 m
(c) 30 m
(d) 50 m
Explanation: R = u² sin2θ / g = 400×0.866/10 ≈ 34.6 ≈ 35.

Q467. A body of mass 15 kg moving at 8 m/s. Momentum:
(a) 120 kg·m/s ✅
(b) 100 kg·m/s
(c) 80 kg·m/s
(d) 140 kg·m/s
Explanation: p = m·v = 15×8 = 120.

Q468. Work done by 60 N force moving body 6 m at 60°:
(a) 180 J ✅
(b) 200 J
(c) 250 J
(d) 300 J
Explanation: W = F·d·cosθ = 60×6×0.5 = 180.

Q469. A pendulum length 9 m. Time period:
(a) 6 s ✅
(b) 4 s
(c) 5 s
(d) 7 s
Explanation: T = 2π√(l/g) ≈ 6.

Q470. A body of mass 10 kg moving at 20 m/s. KE:
(a) 2000 J ✅
(b) 1500 J
(c) 1000 J
(d) 2500 J
Explanation: KE = ½mv² = 0.5×10×400 = 2000.

Q471. A wheel angular speed 47.1 rad/s. Frequency:
(a) 7.5 Hz ✅
(b) 5 Hz
(c) 10 Hz
(d) 15 Hz
Explanation: f = ω/2π = 47.1/6.28 ≈ 7.5.

Q472. A body falls freely for 6 s. Velocity attained:
(a) 60 m/s ✅
(b) 50 m/s
(c) 70 m/s
(d) 80 m/s
Explanation: v = g·t = 10×6 = 60.

Q473. Work done lifting 20 kg mass to 4 m (g=10):
(a) 800 J ✅
(b) 600 J
(c) 400 J
(d) 1000 J
Explanation: W = mgh = 20×10×4 = 800.

Q474. A body of mass 2 kg moving at 40 m/s. Momentum:
(a) 80 kg·m/s ✅
(b) 60 kg·m/s
(c) 100 kg·m/s
(d) 120 kg·m/s
Explanation: p = m·v = 2×40 = 80.

Q475. A spring constant k=100 N/m, stretched 0.3 m. Energy stored:
(a) 4.5 J ✅
(b) 3 J
(c) 5 J
(d) 6 J
Explanation: U = ½kx² = 0.5×100×0.09 = 4.5.

Q476. A projectile launched at 45° with speed 20 m/s. Range:
(a) 40 m ✅
(b) 30 m
(c) 50 m
(d) 60 m
Explanation: R = u² sin2θ / g = 400×1/10 = 40.

Q477. A body of mass 8 kg moving at 15 m/s. Momentum:
(a) 120 kg·m/s ✅
(b) 100 kg·m/s
(c) 80 kg·m/s
(d) 140 kg·m/s
Explanation: p = m·v = 8×15 = 120.

Q478. Work done by 50 N force moving body 10 m at 0°:
(a) 500 J ✅
(b) 400 J
(c) 600 J
(d) 250 J
Explanation: W = F·d = 50×10 = 500.

Q479. A wheel angular speed 12.56 rad/s. Frequency:
(a) 2 Hz ✅
(b) 4 Hz
(c) 6 Hz
(d) 8 Hz
Explanation: f = ω/2π = 12.56/6.28 = 2.

Q480. A pendulum length 2.25 m. Time period:
(a) 3 s ✅
(b) 2 s
(c) 4 s
(d) 5 s
Explanation: T = 2π√(l/g) ≈ 3.

Q481. A body of mass 5 kg moving at 18 m/s. KE:
(a) 810 J ✅
(b) 900 J
(c) 720 J
(d) 1000 J
Explanation: KE = ½mv² = 0.5×5×324 = 810.

Q482. Gravitational force between two 100 kg masses 1 m apart:
(a) 6.67×10⁻⁷ N ✅
(b) 6.67×10⁻⁸ N
(c) 6.67×10⁻⁹ N
(d) 6.67×10⁻¹⁰ N
Explanation: F = Gm₁m₂/r² = 6.67×10⁻¹¹×10⁴ = 6.67×10⁻⁷.

Q483. A spring constant k=150 N/m, stretched 0.2 m. Energy stored:
(a) 3 J ✅
(b) 2 J
(c) 4 J
(d) 5 J
Explanation: U = ½kx² = 0.5×150×0.04 = 3.

Q484. A body falls freely for 5 s. Distance covered:
(a) 125 m ✅
(b) 100 m
(c) 150 m
(d) 200 m
Explanation: s = ½gt² = 0.5×10×25 = 125.

Q485. Work done lifting 10 kg mass to 8 m (g=10):
(a) 800 J ✅
(b) 600 J
(c) 1000 J
(d) 1200 J
Explanation: W = mgh = 10×10×8 = 800.

Q486. A body of mass 2 kg moving at 60 m/s. Momentum:
(a) 120 kg·m/s ✅
(b) 100 kg·m/s
(c) 80 kg·m/s
(d) 150 kg·m/s
Explanation: p = m·v = 2×60 = 120.

Q487. A wheel torque 36 Nm, radius 0.6 m. Force:
(a) 60 N ✅
(b) 40 N
(c) 50 N
(d) 30 N
Explanation: τ = F·r ⇒ F = τ/r = 36/0.6 = 60.

Q488. A pendulum length 0.81 m. Time period:
(a) 1.8 s ✅
(b) 2 s
(c) 1.5 s
(d) 3 s
Explanation: T = 2π√(l/g) ≈ 1.8.

Q489. A body of mass 12 kg moving at 20 m/s. KE:
(a) 2400 J ✅
(b) 2000 J
(c) 1800 J
(d) 2500 J
Explanation: KE = ½mv² = 0.5×12×400 = 2400.

Q490. Pressure at depth 40 m in water (ρ=1000, g=10):
(a) 4×10⁵ Pa ✅
(b) 3×10⁵ Pa
(c) 2×10⁵ Pa
(d) 5×10⁵ Pa
Explanation: P = ρgh = 1000×10×40 = 4×10⁵.

Q491. A body of mass 3 kg oscillates ω=10 rad/s, amplitude 0.1 m. Max PE:
(a) 1.5 J ✅
(b) 2 J
(c) 3 J
(d) 1 J
Explanation: Max PE = ½mω²A² = 0.5×3×100×0.01 = 1.5.

Q492. A projectile launched at 30° with speed 15 m/s. Range:
(a) 19.5 m ✅
(b) 25 m
(c) 15 m
(d) 30 m
Explanation: R = u² sin2θ / g = 225×0.866/10 ≈ 19.5.

Q493. A body of mass 25 kg moving at 10 m/s. Momentum:
(a) 250 kg·m/s ✅
(b) 200 kg·m/s
(c) 150 kg·m/s
(d) 300 kg·m/s
Explanation: p = m·v = 25×10 = 250.

Q494. Work done by 100 N force moving body 5 m at 60°:
(a) 250 J ✅
(b) 300 J
(c) 400 J
(d) 200 J
Explanation: W = F·d·cosθ = 100×5×0.5 = 250.

Q495. A pendulum length 16 m. Time period:
(a) 8 s ✅
(b) 6 s
(c) 10 s
(d) 12 s
Explanation: T = 2π√(l/g) ≈ 8.

Q496. A body of mass 10 kg moving at 25 m/s. KE:
(a) 3125 J ✅
(b) 2500 J
(c) 2000 J
(d) 3500 J
Explanation: KE = ½mv² = 0.5×10×625 = 3125.

Q497. A wheel angular speed 78.5 rad/s. Frequency:
(a) 12.5 Hz ✅
(b) 10 Hz
(c) 15 Hz
(d) 20 Hz
Explanation: f = ω/2π = 78.5/6.28 ≈ 12.5.

Q498. A body falls freely for 12 s. Velocity attained:
(a) 120 m/s ✅
(b) 100 m/s
(c) 140 m/s
(d) 150 m/s
Explanation: v = g·t = 10×12 = 120.

Q499. Work done lifting 50 kg mass to 3 m (g=10):
(a) 1500 J ✅
(b) 1000 J
(c) 1200 J
(d) 2000 J
Explanation: W = mgh = 50×10×3 = 1500.

Q500. A body of mass 6 kg moving at 30 m/s. Momentum:
(a) 180 kg·m/s ✅
(b) 150 kg·m/s
(c) 200 kg·m/s
(d) 120 kg·m/s
Explanation: p = m·v = 6×30 = 180.