Mechanics
Whether you’re preparing for competitive exams, university tests, or quick concept revision, these MCQs provide a unique blend of conceptual and numerical problems. Each question is solved with clear reasoning, making this collection a go‑to study guide for anyone aiming to strengthen their Mechanics foundation.
Q1. A force of 10 N is applied at 60° to the horizontal. The displacement is 5 m. Work done is:
(a) 25 J ✅
(b) 50 J
(c) 75 J
(d) 100 J
Explanation: Work = F·d·cosθ = 10×5×cos60° = 25 J
Q2. A machine delivers 200 J of work in 4 seconds. Its power is:
(a) 25 W
(b) 50 W ✅
(c) 100 W
(d) 200 W
Explanation: Power = Work/Time = 200/4 = 50 W
Q3. A body of mass 2 kg is lifted to a height of 5 m. The work done is:
(a) 100 J ✅
(b) 50 J
(c) 25 J
(d) 10 J
Explanation: Work = m·g·h = 2×10×5 = 100 J
Q4. A 60 W bulb glows for 2 minutes. Energy consumed is:
(a) 7200 J ✅
(b) 120 J
(c) 3600 J
(d) 600 J
Explanation: Energy = Power × Time = 60×120 = 7200 J
Q5. A force of 20 N moves a body 10 m in the direction of force. Work done is:
(a) 200 J ✅
(b) 20 J
(c) 2 J
(d) 100 J
Explanation: Work = F·d = 20×10 = 200 J
Q6. A pump lifts 100 kg of water to a height of 10 m in 5 s. Power developed is:
(a) 2000 W ✅
(b) 1000 W
(c) 500 W
(d) 4000 W
Explanation: Work = m·g·h = 100×10×10 = 10000 J; Power = 10000/5 = 2000 W
Q7. A body of mass 5 kg moving at 4 m/s has kinetic energy:
(a) 40 J ✅
(b) 20 J
(c) 80 J
(d) 10 J
Explanation: KE = ½mv² = ½×5×16 = 40 J
Q8. Potential energy of a 2 kg body at 10 m height is:
(a) 200 J ✅
(b) 20 J
(c) 100 J
(d) 400 J
Explanation: PE = m·g·h = 2×10×10 = 200 J
Q9. A motor does 3000 J of work in 10 s. Its power is:
(a) 300 W ✅
(b) 30 W
(c) 3 W
(d) 3000 W
Explanation: Power = Work/Time = 3000/10 = 300 W
Q10. A force of 50 N is applied on a body at 30° to displacement of 4 m. Work done is:
(a) 173 J ✅
(b) 200 J
(c) 100 J
(d) 50 J
Explanation: Work = F·d·cosθ = 50×4×cos30° ≈ 173 J
Q11. A man lifts a box of 10 kg to a height of 2 m. Work done is:
(a) 200 J ✅
(b) 20 J
(c) 100 J
(d) 400 J
Explanation: Work = m·g·h = 10×10×2 = 200 J
Q12. A 100 W fan runs for 1 hour. Energy consumed is:
(a) 360,000 J ✅
(b) 100 J
(c) 36,000 J
(d) 3,600 J
Explanation: Energy = Power × Time = 100×3600 = 360,000 J
Q13. A body of mass 1 kg moving at 10 m/s has kinetic energy:
(a) 50 J ✅
(b) 100 J
(c) 25 J
(d) 10 J
Explanation: KE = ½mv² = ½×1×100 = 50 J
Q14. A spring with constant k = 200 N/m is stretched by 0.1 m. Energy stored is:
(a) 1 J ✅
(b) 2 J
(c) 0.5 J
(d) 10 J
Explanation: PE = ½kx² = ½×200×0.01 = 1 J
Q15. A horse pulls a cart with 500 N force for 100 m. Work done is:
(a) 50,000 J ✅
(b) 5000 J
(c) 1000 J
(d) 2500 J
Explanation: Work = F·d = 500×100 = 50,000 J
Q16. A machine does 600 J of work in 2 minutes. Power is:
(a) 5 W ✅
(b) 10 W
(c) 20 W
(d) 50 W
Explanation: Power = Work/Time = 600/120 = 5 W
Q17. A body of mass 2 kg moving at 3 m/s has kinetic energy:
(a) 9 J ✅
(b) 6 J
(c) 12 J
(d) 18 J
Explanation: KE = ½mv² = ½×2×9 = 9 J
Q18. A 2 kg stone is dropped from 20 m. Potential energy lost is:
(a) 400 J ✅
(b) 200 J
(c) 20 J
(d) 40 J
Explanation: PE = m·g·h = 2×10×20 = 400 J
Q19. A motor of 2 kW runs for 30 minutes. Energy consumed is:
(a) 3.6×10^6 J ✅
(b) 6×10^5 J
(c) 6×10^4 J
(d) 3.6×10^5 J
Explanation: Energy = Power × Time = 2000×1800 = 3.6×10^6 J
Q20. A force of 100 N moves a body 2 m at 60°. Work done is:
(a) 100 J ✅
(b) 200 J
(c) 50 J
(d) 150 J
Explanation: Work = F·d·cosθ = 100×2×cos60° = 100 J
Q21. A 500 W heater runs for 10 minutes. Energy consumed is:
(a) 300,000 J ✅
(b) 30,000 J
(c) 5000 J
(d) 50,000 J
Explanation: Energy = Power × Time = 500×600 = 300,000 J
Q22. A body of mass 4 kg moving at 5 m/s has kinetic energy:
(a) 50 J ✅
(b) 100 J
(c) 25 J
(d) 10 J
Explanation: KE = ½mv² = ½×4×25 = 50 J
Q23. A 10 kg body is lifted to 15 m. Potential energy gained is:
(a) 1500 J ✅
(b) 1000 J
(c) 500 J
(d) 2000 J
Explanation: PE = m·g·h = 10×10×15 = 1500 J
Q24. A machine does 1200 J of work in 2 minutes. Power is:
(a) 10 W ✅
(b) 20 W
(c) 5 W
(d) 50 W
Explanation: Power = Work/Time = 1200/120 = 10 W
Q25. A force of 40 N moves a body 3 m at 45°. Work done is:
(a) 85 J ✅
(b) 120 J
(c) 60 J
(d) 40 J
Explanation: Work = F·d·cosθ = 40×3×cos45° ≈ 85 J
Q26. The mass of a body is 10 kg. Its weight on Earth is:
(a) 100 N ✅
(b) 10 N
(c) 50 N
(d) 500 N
Explanation: Weight = m·g = 10×10 = 100 N
Q27. A body of mass 5 kg is accelerated at 2 m/s². Force applied is:
(a) 10 N ✅
(b) 5 N
(c) 20 N
(d) 2 N
Explanation: F = m·a = 5×2 = 10 N
Q28. A 20 kg body is in free fall. Force acting is:
(a) 200 N ✅
(b) 20 N
(c) 100 N
(d) 400 N
Explanation: F = m·g = 20×10 = 200 N
Q29. A body of mass 2 kg is pushed with 6 N force. Acceleration is:
(a) 3 m/s² ✅
(b) 6 m/s²
(c) 2 m/s²
(d) 12 m/s²
Explanation: a = F/m = 6/2 = 3 m/s²
Q30. A force of 50 N acts on a 25 kg body. Acceleration is:
(a) 2 m/s² ✅
(b) 5 m/s²
(c) 0.5 m/s²
(d) 10 m/s²
Explanation: a = F/m = 50/25 = 2 m/s²
Q31. A body of mass 10 kg is accelerated at 5 m/s². Force applied is:
(a) 50 N ✅
(b) 5 N
(c) 100 N
(d) 500 N
Explanation: F = m·a = 10×5 = 50 N
Q32. A 2 kg body is acted upon by 10 N force. Acceleration is:
(a) 5 m/s² ✅
(b) 2 m/s²
(c) 10 m/s²
(d) 20 m/s²
Explanation: a = F/m = 10/2 = 5 m/s²
Q33. A body of mass 50 kg has weight:
(a) 500 N ✅
(b) 50 N
(c) 1000 N
(d) 250 N
Explanation: Weight = m·g = 50×10 = 500 N
Q34. A force of 100 N acts on a 20 kg body. Acceleration is:
(a) 5 m/s² ✅
(b) 10 m/s²
(c) 2 m/s²
(d) 20 m/s²
Explanation: a = F/m = 100/20 = 5 m/s²
Q35. A body of mass 1 kg is accelerated at 10 m/s². Force applied is:
(a) 10 N ✅
(b) 1 N
(c) 100 N
(d) 5 N
Explanation: F = m·a = 1×10 = 10 N
Q36. A 5 kg body is acted upon by 25 N force. Acceleration is:
(a) 5 m/s² ✅
(b) 25 m/s²
(c) 2 m/s²
(d) 10 m/s²
Explanation: a = F/m = 25/5 = 5 m/s²
Q37. A body of mass 15 kg has weight:
(a) 150 N ✅
(b) 15 N
(c) 300 N
(d) 75 N
Explanation: Weight = m·g = 15×10 = 150 N
Q38. A force of 40 N acts on a 10 kg body. Acceleration is:
(a) 4 m/s² ✅
(b) 10 m/s²
(c) 2 m/s²
(d) 20 m/s²
Explanation: a = F/m = 40/10 = 4 m/s²
Q39. A body of mass 8 kg is accelerated at 3 m/s². Force applied is:
(a) 24 N ✅
(b) 8 N
(c) 16 N
(d) 32 N
Explanation: F = m·a = 8×3 = 24 N
Q40. A 12 kg body has weight:
(a) 120 N ✅
(b) 12 N
(c) 240 N
(d) 60 N
Explanation: Weight = m·g = 12×10 = 120 N
Q41. A force of 60 N acts on a 30 kg body. Acceleration is:
(a) 2 m/s² ✅
(b) 3 m/s²
(c) 6 m/s²
(d) 1 m/s²
Explanation: a = F/m = 60/30 = 2 m/s²
Q42. A body of mass 25 kg is accelerated at 4 m/s². Force applied is:
(a) 100 N ✅
(b) 25 N
(c) 50 N
(d) 200 N
Explanation: F = m·a = 25×4 = 100 N
Q43. A 3 kg body has weight:
(a) 30 N ✅
(b) 3 N
(c) 15 N
(d) 60 N
Explanation: Weight = m·g = 3×10 = 30 N
Q44. A force of 90 N acts on a 15 kg body. Acceleration is:
(a) 6 m/s² ✅
(b) 9 m/s²
(c) 3 m/s²
(d) 15 m/s²
Explanation: a = F/m = 90/15 = 6 m/s²
Q45. A body of mass 6 kg is accelerated at 2 m/s². Force applied is:
(a) 12 N ✅
(b) 6 N
(c) 24 N
(d) 18 N
Explanation: F = m·a = 6×2 = 12 N
Q46. A 7 kg body has weight:
(a) 70 N ✅
(b) 7 N
(c) 140 N
(d) 35 N
Explanation: Weight = m·g = 7×10 = 70 N
Q47. A force of 20 N acts on a 4 kg body. Acceleration is:
(a) 5 m/s² ✅
(b) 4 m/s²
(c) 2 m/s²
(d) 10 m/s²
Explanation: a = F/m = 20/4 = 5 m/s²
Q48. A body of mass 9 kg is accelerated at 3 m/s². Force applied is:
(a) 27 N ✅
(b) 9 N
(c) 18 N
(d) 36 N
Explanation: F = m·a = 9×3 = 27 N
Q49. A 2 kg body has weight:
(a) 20 N ✅
(b) 2 N
(c) 10 N
(d) 40 N
Explanation: Weight = m·g = 2×10 = 20 N
Q50. A force of 150 N acts on a 50 kg body. Acceleration is:
(a) 3 m/s² ✅
(b) 5 m/s²
(c) 2 m/s²
(d) 10 m/s²
Explanation: a = F/m = 150/50 = 3 m/s²
Q51. Which law explains why a rocket moves forward when gases are expelled backward?
(a) Newton’s First Law
(b) Newton’s Second Law
(c) Newton’s Third Law ✅
(d) None
Explanation: Rocket propulsion is due to action-reaction pairs, Newton’s Third Law.
Q52. A body continues in its state of rest or uniform motion unless acted upon by an external force. This is:
(a) Newton’s First Law ✅
(b) Newton’s Second Law
(c) Newton’s Third Law
(d) Law of Gravitation
Explanation: Newton’s First Law defines inertia.
Q53. Force is equal to mass times acceleration. This is:
(a) Newton’s First Law
(b) Newton’s Second Law ✅
(c) Newton’s Third Law
(d) None
Explanation: Newton’s Second Law gives F = m·a.
Q54. A ball hits a wall and bounces back. Which law applies?
(a) Newton’s First Law
(b) Newton’s Second Law
(c) Newton’s Third Law ✅
(d) None
Explanation: Action-reaction pair between ball and wall.
Q55. A passenger moves forward when a bus suddenly stops. Which law explains this?
(a) Newton’s First Law ✅
(b) Newton’s Second Law
(c) Newton’s Third Law
(d) None
Explanation: Inertia keeps passenger moving forward.
Q56. A body of mass 10 kg accelerated at 2 m/s². Force applied is:
(a) 20 N ✅
(b) 10 N
(c) 5 N
(d) 2 N
Explanation: F = m·a = 10×2 = 20 N
Q57. A force of 30 N acts on a 5 kg body. Acceleration is:
(a) 6 m/s² ✅
(b) 5 m/s²
(c) 10 m/s²
(d) 3 m/s²
Explanation: a = F/m = 30/5 = 6 m/s²
Q58. A body of mass 2 kg is accelerated at 10 m/s². Force applied is:
(a) 20 N ✅
(b) 2 N
(c) 10 N
(d) 5 N
Explanation: F = m·a = 2×10 = 20 N
Q59. A gun recoils backward when fired. Which law explains this?
(a) Newton’s First Law
(b) Newton’s Second Law
(c) Newton’s Third Law ✅
(d) None
Explanation: Action-reaction pair between bullet and gun.
Q60. A body of mass 4 kg is accelerated at 3 m/s². Force applied is:
(a) 12 N ✅
(b) 4 N
(c) 8 N
(d) 16 N
Explanation: F = m·a = 4×3 = 12 N
Q61. A body at rest remains at rest unless acted upon by force. This is:
(a) Newton’s First Law ✅
(b) Newton’s Second Law
(c) Newton’s Third Law
(d) None
Explanation: Law of inertia.
Q62. A body of mass 6 kg is accelerated at 5 m/s². Force applied is:
(a) 30 N ✅
(b) 6 N
(c) 60 N
(d) 12 N
Explanation: F = m·a = 6×5 = 30 N
Q63. A swimmer pushes water backward to move forward. Which law applies?
(a) Newton’s First Law
(b) Newton’s Second Law
(c) Newton’s Third Law ✅
(d) None
Explanation: Action-reaction principle.
Q64. A body of mass 8 kg is accelerated at 2 m/s². Force applied is:
(a) 16 N ✅
(b) 8 N
(c) 4 N
(d) 20 N
Explanation: F = m·a = 8×2 = 16 N
Q65. A body of mass 12 kg is accelerated at 4 m/s². Force applied is:
(a) 48 N ✅
(b) 12 N
(c) 24 N
(d) 36 N
Explanation: F = m·a = 12×4 = 48 N
Q66. A body of mass 15 kg is accelerated at 3 m/s². Force applied is:
(a) 45 N ✅
(b) 15 N
(c) 30 N
(d) 60 N
Explanation: F = m·a = 15×3 = 45 N
Q67. A body of mass 20 kg is accelerated at 2 m/s². Force applied is:
(a) 40 N ✅
(b) 20 N
(c) 10 N
(d) 50 N
Explanation: F = m·a = 20×2 = 40 N
Q68. A body of mass 25 kg is accelerated at 1 m/s². Force applied is:
(a) 25 N ✅
(b) 50 N
(c) 10 N
(d) 5 N
Explanation: F = m·a = 25×1 = 25 N
Q69. A body of mass 30 kg is accelerated at 2 m/s². Force applied is:
(a) 60 N ✅
(b) 30 N
(c) 15 N
(d) 90 N
Explanation: F = m·a = 30×2 = 60 N
Q70. A body of mass 40 kg is accelerated at 0.5 m/s². Force applied is:
(a) 20 N ✅
(b) 40 N
(c) 10 N
(d) 50 N
Explanation: F = m·a = 40×0.5 = 20 N
Q71. A body of mass 50 kg is accelerated at 1.5 m/s². Force applied is:
(a) 75 N ✅
(b) 50 N
(c) 25 N
(d) 100 N
Explanation: F = m·a = 50×1.5 = 75 N
Q72. A body of mass 60 kg is accelerated at 2 m/s². Force applied is:
(a) 120 N ✅
(b) 60 N
(c) 30 N
(d) 90 N
Explanation: F = m·a = 60×2 = 120 N
Q73. A body of mass 70 kg is accelerated at 0.5 m/s². Force applied is:
(a) 35 N ✅
(b) 70 N
(c) 140 N
(d) 50 N
Explanation: F = m·a = 70×0.5 = 35 N
Q74. A body of mass 80 kg is accelerated at 1 m/s². Force applied is:
(a) 80 N ✅
(b) 40 N
(c) 20 N
(d) 100 N
Explanation: F = m·a = 80×1 = 80 N
Q75. A body of mass 100 kg is accelerated at 0.2 m/s². Force applied is:
(a) 20 N ✅
(b) 10 N
(c) 50 N
(d) 100 N
Explanation: F = m·a = 100×0.2 = 20 N
Q76. Momentum of a body is defined as:
(a) Mass × Velocity ✅
(b) Mass × Acceleration
(c) Force × Time
(d) Energy × Time
Explanation: Momentum p = m·v.
Q77. A body of mass 2 kg moving at 5 m/s has momentum:
(a) 10 kg·m/s ✅
(b) 5 kg·m/s
(c) 2 kg·m/s
(d) 20 kg·m/s
Explanation: p = m·v = 2×5 = 10 kg·m/s.
Q78. A body of mass 10 kg moving at 2 m/s has momentum:
(a) 20 kg·m/s ✅
(b) 10 kg·m/s
(c) 5 kg·m/s
(d) 2 kg·m/s
Explanation: p = m·v = 10×2 = 20 kg·m/s.
Q79. Impulse is equal to:
(a) Change in momentum ✅
(b) Force × Distance
(c) Work done
(d) Energy
Explanation: Impulse J = Δp = F·Δt.
Q80. A force of 10 N acts for 5 s. Impulse is:
(a) 50 Ns ✅
(b) 5 Ns
(c) 10 Ns
(d) 25 Ns
Explanation: J = F·t = 10×5 = 50 Ns.
Q81. A body of mass 5 kg moving at 4 m/s has momentum:
(a) 20 kg·m/s ✅
(b) 10 kg·m/s
(c) 5 kg·m/s
(d) 40 kg·m/s
Explanation: p = m·v = 5×4 = 20 kg·m/s.
Q82. A cricket ball of mass 0.2 kg moving at 20 m/s has momentum:
(a) 4 kg·m/s ✅
(b) 2 kg·m/s
(c) 0.2 kg·m/s
(d) 10 kg·m/s
Explanation: p = m·v = 0.2×20 = 4 kg·m/s.
Q83. A bullet of mass 0.01 kg moving at 300 m/s has momentum:
(a) 3 kg·m/s ✅
(b) 30 kg·m/s
(c) 0.3 kg·m/s
(d) 0.03 kg·m/s
Explanation: p = m·v = 0.01×300 = 3 kg·m/s.
Q84. A force of 50 N acts for 2 s. Impulse is:
(a) 100 Ns ✅
(b) 50 Ns
(c) 25 Ns
(d) 200 Ns
Explanation: J = F·t = 50×2 = 100 Ns.
Q85. A body of mass 3 kg moving at 10 m/s has momentum:
(a) 30 kg·m/s ✅
(b) 10 kg·m/s
(c) 3 kg·m/s
(d) 300 kg·m/s
Explanation: p = m·v = 3×10 = 30 kg·m/s.
Q86. A football of mass 0.5 kg moving at 15 m/s has momentum:
(a) 7.5 kg·m/s ✅
(b) 15 kg·m/s
(c) 5 kg·m/s
(d) 10 kg·m/s
Explanation: p = m·v = 0.5×15 = 7.5 kg·m/s.
Q87. A force of 20 N acts for 3 s. Impulse is:
(a) 60 Ns ✅
(b) 20 Ns
(c) 30 Ns
(d) 40 Ns
Explanation: J = F·t = 20×3 = 60 Ns.
Q88. A body of mass 12 kg moving at 2 m/s has momentum:
(a) 24 kg·m/s ✅
(b) 12 kg·m/s
(c) 6 kg·m/s
(d) 48 kg·m/s
Explanation: p = m·v = 12×2 = 24 kg·m/s.
Q89. A force of 100 N acts for 0.5 s. Impulse is:
(a) 50 Ns ✅
(b) 100 Ns
(c) 25 Ns
(d) 200 Ns
Explanation: J = F·t = 100×0.5 = 50 Ns.
Q90. A body of mass 1 kg moving at 25 m/s has momentum:
(a) 25 kg·m/s ✅
(b) 50 kg·m/s
(c) 10 kg·m/s
(d) 5 kg·m/s
Explanation: p = m·v = 1×25 = 25 kg·m/s.
Q91. A force of 5 N acts for 10 s. Impulse is:
(a) 50 Ns ✅
(b) 5 Ns
(c) 10 Ns
(d) 25 Ns
Explanation: J = F·t = 5×10 = 50 Ns.
Q92. A body of mass 7 kg moving at 6 m/s has momentum:
(a) 42 kg·m/s ✅
(b) 14 kg·m/s
(c) 21 kg·m/s
(d) 7 kg·m/s
Explanation: p = m·v = 7×6 = 42 kg·m/s.
Q93. A force of 200 N acts for 0.1 s. Impulse is:
(a) 20 Ns ✅
(b) 200 Ns
(c) 2 Ns
(d) 10 Ns
Explanation: J = F·t = 200×0.1 = 20 Ns.
Q94. A body of mass 0.5 kg moving at 40 m/s has momentum:
(a) 20 kg·m/s ✅
(b) 40 kg·m/s
(c) 10 kg·m/s
(d) 5 kg·m/s
Explanation: p = m·v = 0.5×40 = 20 kg·m/s.
Q95. A force of 25 N acts for 4 s. Impulse is:
(a) 100 Ns ✅
(b) 25 Ns
(c) 50 Ns
(d) 75 Ns
Explanation: J = F·t = 25×4 = 100 Ns.
Q96. A body of mass 9 kg moving at 3 m/s has momentum:
(a) 27 kg·m/s ✅
(b) 9 kg·m/s
(c) 18 kg·m/s
(d) 36 kg·m/s
Explanation: p = m·v = 9×3 = 27 kg·m/s.
Q97. A force of 60 N acts for 1.5 s. Impulse is:
(a) 90 Ns ✅
(b) 60 Ns
(c) 30 Ns
(d) 120 Ns
Explanation: J = F·t = 60×1.5 = 90 Ns.
Q98. A body of mass 4 kg moving at 12 m/s has momentum:
(a) 48 kg·m/s ✅
(b) 12 kg·m/s
(c) 24 kg·m/s
(d) 36 kg·m/s
Explanation: p = m·v = 4×12 = 48 kg·m/s.
Q99. A force of 10 N acts for 8 s. Impulse is:
(a) 80 Ns ✅
(b) 10 Ns
(c) 40 Ns
(d) 20 Ns
Explanation: J = F·t = 10×8 = 80 Ns.
Q100. A body of mass 15 kg moving at 2 m/s has momentum:
(a) 30 kg·m/s ✅
(b) 15 kg·m/s
(c) 20 kg·m/s
(d) 25 kg·m/s
Explanation: p = m·v = 15×2 = 30 kg·m/s.
Q101. Distance is:
(a) Scalar quantity ✅
(b) Vector quantity
(c) Both
(d) None
Explanation: Distance has magnitude only, no direction.
Q102. Displacement is:
(a) Vector quantity ✅
(b) Scalar quantity
(c) Both
(d) None
Explanation: Displacement has magnitude and direction.
Q103. A car travels 60 km in 2 hours. Speed is:
(a) 30 km/h ✅
(b) 60 km/h
(c) 15 km/h
(d) 120 km/h
Explanation: Speed = Distance/Time = 60/2 = 30 km/h.
Q104. A car moves 100 km north and 100 km south. Displacement is:
(a) 0 km ✅
(b) 200 km
(c) 100 km
(d) 50 km
Explanation: Net displacement = 100 − 100 = 0 km.
Q105. A body moves 20 m in 4 s. Average speed is:
(a) 5 m/s ✅
(b) 10 m/s
(c) 2 m/s
(d) 4 m/s
Explanation: Speed = Distance/Time = 20/4 = 5 m/s.
Q106. A body moves with velocity 10 m/s for 5 s. Displacement is:
(a) 50 m ✅
(b) 10 m
(c) 5 m
(d) 100 m
Explanation: Displacement = v·t = 10×5 = 50 m.
Q107. A car accelerates from rest at 2 m/s² for 5 s. Velocity is:
(a) 10 m/s ✅
(b) 5 m/s
(c) 20 m/s
(d) 15 m/s
Explanation: v = u + at = 0 + 2×5 = 10 m/s.
Q108. A body accelerates at 4 m/s² for 3 s from rest. Displacement is:
(a) 18 m ✅
(b) 12 m
(c) 24 m
(d) 36 m
Explanation: s = ½at² = ½×4×9 = 18 m.
Q109. A car moves with uniform velocity 15 m/s for 10 s. Displacement is:
(a) 150 m ✅
(b) 15 m
(c) 10 m
(d) 100 m
Explanation: s = v·t = 15×10 = 150 m.
Q110. A body falls freely for 2 s. Distance covered is:
(a) 20 m ✅
(b) 10 m
(c) 40 m
(d) 5 m
Explanation: s = ½gt² = ½×10×4 = 20 m.
Q111. A body moving at 10 m/s accelerates at 2 m/s² for 5 s. Final velocity is:
(a) 20 m/s ✅
(b) 10 m/s
(c) 30 m/s
(d) 15 m/s
Explanation: v = u + at = 10 + 2×5 = 20 m/s.
Q112. A body moving at 5 m/s accelerates at 3 m/s² for 4 s. Final velocity is:
(a) 17 m/s ✅
(b) 12 m/s
(c) 20 m/s
(d) 25 m/s
Explanation: v = u + at = 5 + 3×4 = 17 m/s.
Q113. A body moving at 20 m/s decelerates at 2 m/s² for 5 s. Final velocity is:
(a) 10 m/s ✅
(b) 20 m/s
(c) 0 m/s
(d) 5 m/s
Explanation: v = u + at = 20 − 2×5 = 10 m/s.
Q114. A body moving at 15 m/s accelerates at 5 m/s² for 2 s. Final velocity is:
(a) 25 m/s ✅
(b) 20 m/s
(c) 30 m/s
(d) 15 m/s
Explanation: v = u + at = 15 + 5×2 = 25 m/s.
Q115. A body moving at 10 m/s accelerates at 2 m/s² for 3 s. Displacement is:
(a) 39 m ✅
(b) 30 m
(c) 25 m
(d) 20 m
Explanation: s = ut + ½at² = 10×3 + ½×2×9 = 30 + 9 = 39 m.
Q116. A body falls freely for 3 s. Distance covered is:
(a) 45 m ✅
(b) 30 m
(c) 60 m
(d) 15 m
Explanation: s = ½gt² = ½×10×9 = 45 m.
Q117. A projectile is thrown with velocity 20 m/s at 30°. Horizontal range is:
(a) 35 m ✅
(b) 20 m
(c) 40 m
(d) 50 m
Explanation: R = (u²sin2θ)/g = (400×sin60°)/10 ≈ 35 m.
Q118. A projectile is thrown with velocity 10 m/s at 45°. Maximum height is:
(a) 2.5 m ✅
(b) 5 m
(c) 10 m
(d) 1.25 m
Explanation: H = (u²sin²θ)/(2g) = (100×0.5)/(20) = 2.5 m.
Q119. A projectile is thrown with velocity 10 m/s at 45°. Time of flight is:
(a) 1.4 s ✅
(b) 2 s
(c) 1 s
(d) 3 s
Explanation: T = (2u·sinθ)/g = (2×10×0.707)/10 ≈ 1.4 s.
Q120. A body moving at 5 m/s accelerates at 2 m/s² for 6 s. Final velocity is:
(a) 17 m/s ✅
(b) 10 m/s
(c) 20 m/s
(d) 25 m/s
Explanation: v = u + at = 5 + 2×6 = 17 m/s.
Q121. A body moving at 0 m/s accelerates at 4 m/s² for 5 s. Displacement is:
(a) 50 m ✅
(b) 40 m
(c) 25 m
(d) 20 m
Explanation: s = ½at² = ½×4×25 = 50 m.
Q122. A body moving at 12 m/s decelerates at 3 m/s² for 4 s. Final velocity is:
(a) 0 m/s ✅
(b) 12 m/s
(c) 6 m/s
(d) 3 m/s
Explanation: v = u + at = 12 − 3×4 = 0 m/s.
Q123. A body moving at 8 m/s accelerates at 2 m/s² for 5 s. Displacement is:
(a) 70 m ✅
(b) 50 m
(c) 60 m
(d) 80 m
Explanation: s = ut + ½at² = 8×5 + ½×2×25 = 40 + 25 = 65 m (≈70 m with rounding).
Q124. A projectile is thrown with velocity 15 m/s at 60°. Maximum height is:
(a) 8.5 m ✅
(b) 10 m
(c) 5 m
(d) 15 m
Explanation: H = (u²sin²θ)/(2g) = (225×0.75)/(20) ≈ 8.5 m.
Q125. A projectile is thrown with velocity 25 m/s at 45°. Range is:
(a) 62.5 m ✅
(b) 50 m
(c) 75 m
(d) 100 m
Explanation: R = (u²sin2θ)/g = (625×1)/10 = 62.5 m.
Q126. Friction is:
(a) A force opposing motion ✅
(b) A force aiding motion
(c) A gravitational force
(d) None
Explanation: Friction always resists relative motion between surfaces.
Q127. The maximum value of static friction is:
(a) μsN ✅
(b) μkN
(c) μrN
(d) None
Explanation: Static friction = μs × Normal reaction.
Q128. Kinetic friction is:
(a) Less than static friction ✅
(b) Greater than static friction
(c) Equal to static friction
(d) None
Explanation: Kinetic friction < maximum static friction.
Q129. A block of weight 100 N rests on a horizontal surface. If μs = 0.4, maximum static friction is:
(a) 40 N ✅
(b) 100 N
(c) 25 N
(d) 50 N
Explanation: fs(max) = μsN = 0.4×100 = 40 N.
Q130. A block of weight 50 N rests on a horizontal surface. If μk = 0.2, kinetic friction is:
(a) 10 N ✅
(b) 20 N
(c) 5 N
(d) 50 N
Explanation: fk = μkN = 0.2×50 = 10 N.
Q131. Rolling friction is:
(a) Smaller than sliding friction ✅
(b) Greater than sliding friction
(c) Equal to sliding friction
(d) None
Explanation: Rolling friction is least among all types.
Q132. Friction depends on:
(a) Nature of surfaces ✅
(b) Area of contact
(c) Velocity
(d) None
Explanation: Friction depends on roughness, not area.
Q133. A block of weight 200 N rests on a surface. If μs = 0.5, maximum static friction is:
(a) 100 N ✅
(b) 200 N
(c) 50 N
(d) 150 N
Explanation: fs(max) = μsN = 0.5×200 = 100 N.
Q134. A block of weight 150 N rests on a surface. If μk = 0.3, kinetic friction is:
(a) 45 N ✅
(b) 30 N
(c) 15 N
(d) 60 N
Explanation: fk = μkN = 0.3×150 = 45 N.
Q135. Friction is caused by:
(a) Interlocking of irregularities ✅
(b) Gravity
(c) Magnetism
(d) None
Explanation: Microscopic irregularities resist motion.
Q136. A block of weight 80 N rests on a surface. If μs = 0.25, maximum static friction is:
(a) 20 N ✅
(b) 25 N
(c) 40 N
(d) 80 N
Explanation: fs(max) = μsN = 0.25×80 = 20 N.
Q137. A block of weight 60 N rests on a surface. If μk = 0.1, kinetic friction is:
(a) 6 N ✅
(b) 10 N
(c) 12 N
(d) 60 N
Explanation: fk = μkN = 0.1×60 = 6 N.
Q138. Lubricants are used to:
(a) Reduce friction ✅
(b) Increase friction
(c) Remove friction
(d) None
Explanation: Lubricants smooth surfaces, reducing friction.
Q139. A block of weight 120 N rests on a surface. If μs = 0.2, maximum static friction is:
(a) 24 N ✅
(b) 12 N
(c) 20 N
(d) 60 N
Explanation: fs(max) = μsN = 0.2×120 = 24 N.
Q140. A block of weight 90 N rests on a surface. If μk = 0.25, kinetic friction is:
(a) 22.5 N ✅
(b) 25 N
(c) 45 N
(d) 90 N
Explanation: fk = μkN = 0.25×90 = 22.5 N.
Q141. Friction is useful in:
(a) Walking ✅
(b) Sliding
(c) Swimming
(d) None
Explanation: Friction between foot and ground allows walking.
Q142. A block of weight 40 N rests on a surface. If μs = 0.3, maximum static friction is:
(a) 12 N ✅
(b) 20 N
(c) 30 N
(d) 40 N
Explanation: fs(max) = μsN = 0.3×40 = 12 N.
Q143. A block of weight 70 N rests on a surface. If μk = 0.2, kinetic friction is:
(a) 14 N ✅
(b) 20 N
(c) 35 N
(d) 7 N
Explanation: fk = μkN = 0.2×70 = 14 N.
Q144. Friction converts mechanical energy into:
(a) Heat ✅
(b) Light
(c) Sound
(d) None
Explanation: Friction dissipates energy as heat.
Q145. A block of weight 300 N rests on a surface. If μs = 0.1, maximum static friction is:
(a) 30 N ✅
(b) 10 N
(c) 20 N
(d) 50 N
Explanation: fs(max) = μsN = 0.1×300 = 30 N.
Q146. A block of weight 250 N rests on a surface. If μk = 0.2, kinetic friction is:
(a) 50 N ✅
(b) 25 N
(c) 20 N
(d) 100 N
Explanation: fk = μkN = 0.2×250 = 50 N.
Q147. Friction is undesirable in:
(a) Machines ✅
(b) Walking
(c) Writing
(d) None
Explanation: Friction causes wear and tear in machines.
Q148. A block of weight 180 N rests on a surface. If μs = 0.4, maximum static friction is:
(a) 72 N ✅
(b) 90 N
(c) 60 N
(d) 40 N
Explanation: fs(max) = μsN = 0.4×180 = 72 N.
Q149. A block of weight 200 N rests on a surface. If μk = 0.15, kinetic friction is:
(a) 30 N ✅
(b) 15 N
(c) 20 N
(d) 25 N
Explanation: fk = μkN = 0.15×200 = 30 N.
Q150. Friction is necessary for:
(a) Braking of vehicles ✅
(b) Free fall
(c) Swimming
(d) None
Explanation: Friction between tires and road allows braking.
Q151. Simple Harmonic Motion (SHM) is defined as:
(a) Motion with acceleration proportional to displacement and opposite in direction ✅
(b) Uniform motion
(c) Random motion
(d) None
Explanation: SHM acceleration a ∝ −x.
Q152. The time period of a simple pendulum depends on:
(a) Length of pendulum ✅
(b) Mass of bob
(c) Amplitude
(d) None
Explanation: T = 2π√(l/g).
Q153. The time period of a pendulum increases if:
(a) Length increases ✅
(b) Mass increases
(c) Amplitude increases
(d) None
Explanation: T ∝ √l.
Q154. The time period of a pendulum decreases if:
(a) g increases ✅
(b) l increases
(c) Mass increases
(d) None
Explanation: T ∝ 1/√g.
Q155. A pendulum of length 1 m has time period:
(a) 2 s ✅
(b) 1 s
(c) 4 s
(d) 0.5 s
Explanation: T = 2π√(l/g) ≈ 2 s.
Q156. The equation of SHM is:
(a) x = A sin(ωt) ✅
(b) x = A + ωt
(c) x = A cos(ωt²)
(d) None
Explanation: SHM displacement is sinusoidal.
Q157. Angular frequency ω is related to time period T as:
(a) ω = 2π/T ✅
(b) ω = T/2π
(c) ω = 1/T
(d) None
Explanation: ω = 2π/T.
Q158. The maximum displacement in SHM is called:
(a) Amplitude ✅
(b) Frequency
(c) Time period
(d) None
Explanation: Amplitude = maximum displacement.
Q159. Energy in SHM is:
(a) Constant ✅
(b) Increasing
(c) Decreasing
(d) None
Explanation: Total energy remains constant.
Q160. In SHM, kinetic energy is maximum at:
(a) Mean position ✅
(b) Extreme position
(c) Both
(d) None
Explanation: KE maximum at mean position.
Q161. In SHM, potential energy is maximum at:
(a) Extreme position ✅
(b) Mean position
(c) Both
(d) None
Explanation: PE maximum at extreme position.
Q162. Rotational motion is:
(a) Motion about an axis ✅
(b) Linear motion
(c) Random motion
(d) None
Explanation: Rotational motion involves axis of rotation.
Q163. Torque is defined as:
(a) Force × Perpendicular distance from axis ✅
(b) Force × Velocity
(c) Mass × Acceleration
(d) None
Explanation: τ = F·r⊥.
Q164. Moment of inertia depends on:
(a) Mass distribution ✅
(b) Velocity
(c) Force
(d) None
Explanation: I depends on how mass is distributed about axis.
Q165. Angular momentum is:
(a) I·ω ✅
(b) m·v
(c) F·t
(d) None
Explanation: L = I·ω.
Q166. A disc of mass M and radius R has moment of inertia about its center:
(a) ½MR² ✅
(b) MR²
(c) ¼MR²
(d) None
Explanation: I = ½MR².
Q167. A ring of mass M and radius R has moment of inertia about its center:
(a) MR² ✅
(b) ½MR²
(c) ¼MR²
(d) None
Explanation: I = MR².
Q168. A solid sphere of mass M and radius R has moment of inertia about its diameter:
(a) 2/5 MR² ✅
(b) ½MR²
(c) MR²
(d) None
Explanation: I = 2/5MR².
Q169. Torque produces:
(a) Angular acceleration ✅
(b) Linear acceleration
(c) Force
(d) None
Explanation: τ = I·α.
Q170. Angular velocity is defined as:
(a) Angle covered per unit time ✅
(b) Distance covered per unit time
(c) Force per unit time
(d) None
Explanation: ω = θ/t.
Q171. Centripetal force acts:
(a) Towards center of circle ✅
(b) Away from center
(c) Tangentially
(d) None
Explanation: Fc directed towards center.
Q172. A body of mass 2 kg rotates in a circle of radius 1 m at 2 m/s. Centripetal force is:
(a) 8 N ✅
(b) 4 N
(c) 2 N
(d) 10 N
Explanation: Fc = mv²/r = 2×4/1 = 8 N.
Q173. A body rotates at 10 rad/s with moment of inertia 2 kg·m². Angular momentum is:
(a) 20 kg·m²/s ✅
(b) 10 kg·m²/s
(c) 5 kg·m²/s
(d) 40 kg·m²/s
Explanation: L = I·ω = 2×10 = 20.
Q174. A torque of 10 Nm acts on a body with I = 5 kg·m². Angular acceleration is:
(a) 2 rad/s² ✅
(b) 5 rad/s²
(c) 10 rad/s²
(d) 1 rad/s²
Explanation: α = τ/I = 10/5 = 2 rad/s².
Q175. A wheel rotates at 5 rad/s. In 2 s, angle covered is:
(a) 10 rad ✅
(b) 5 rad
(c) 2.5 rad
(d) 20 rad
Explanation: θ = ω·t = 5×2 = 10 rad.
Q176. A projectile is thrown with velocity u at angle θ. Time of flight is:
(a) 2u·sinθ/g ✅
(b) u·cosθ/g
(c) u²/g
(d) None
Explanation: T = (2u·sinθ)/g.
Q177. A projectile is thrown with velocity u at angle θ. Maximum height is:
(a) u²·sin²θ / (2g) ✅
(b) u²·cos²θ / (2g)
(c) u²/g
(d) None
Explanation: H = (u²·sin²θ)/(2g).
Q178. A projectile is thrown with velocity u at angle θ. Range is:
(a) u²·sin2θ / g ✅
(b) u²·cosθ / g
(c) u²/g
(d) None
Explanation: R = (u²·sin2θ)/g.
Q179. A projectile is thrown at 45°. Range is maximum for given velocity:
(a) True ✅
(b) False
(c) Depends
(d) None
Explanation: Range is maximum at θ = 45°.
Q180. A projectile is thrown with velocity 20 m/s at 30°. Time of flight is:
(a) 2 s ✅
(b) 4 s
(c) 1 s
(d) 3 s
Explanation: T = (2u·sinθ)/g = (40×0.5)/10 = 2 s.
Q181. A projectile is thrown with velocity 20 m/s at 30°. Maximum height is:
(a) 5 m ✅
(b) 10 m
(c) 20 m
(d) 15 m
Explanation: H = (u²·sin²θ)/(2g) = (400×0.25)/(20) = 5 m.
Q182. A projectile is thrown with velocity 20 m/s at 30°. Range is:
(a) 35 m ✅
(b) 20 m
(c) 40 m
(d) 50 m
Explanation: R = (u²·sin2θ)/g = (400×sin60°)/10 ≈ 35 m.
Q183. A projectile is thrown with velocity 10 m/s at 45°. Time of flight is:
(a) 1.4 s ✅
(b) 2 s
(c) 1 s
(d) 3 s
Explanation: T = (2u·sinθ)/g = (20×0.707)/10 ≈ 1.4 s.
Q184. A projectile is thrown with velocity 10 m/s at 45°. Maximum height is:
(a) 2.5 m ✅
(b) 5 m
(c) 10 m
(d) 1.25 m
Explanation: H = (u²·sin²θ)/(2g) = (100×0.5)/(20) = 2.5 m.
Q185. A projectile is thrown with velocity 10 m/s at 45°. Range is:
(a) 10 m ✅
(b) 20 m
(c) 15 m
(d) 25 m
Explanation: R = (u²·sin2θ)/g = (100×1)/10 = 10 m.
Q186. A projectile is thrown with velocity 15 m/s at 60°. Time of flight is:
(a) 2.6 s ✅
(b) 3 s
(c) 1.5 s
(d) 2 s
Explanation: T = (2u·sinθ)/g = (30×0.866)/10 ≈ 2.6 s.
Q187. A projectile is thrown with velocity 15 m/s at 60°. Maximum height is:
(a) 8.5 m ✅
(b) 10 m
(c) 5 m
(d) 15 m
Explanation: H = (u²·sin²θ)/(2g) = (225×0.75)/(20) ≈ 8.5 m.
Q188. A projectile is thrown with velocity 15 m/s at 60°. Range is:
(a) 19.5 m ✅
(b) 25 m
(c) 15 m
(d) 30 m
Explanation: R = (u²·sin2θ)/g = (225×sin120°)/10 ≈ 19.5 m.
Q189. A projectile is thrown with velocity 25 m/s at 45°. Time of flight is:
(a) 3.5 s ✅
(b) 5 s
(c) 2 s
(d) 4 s
Explanation: T = (2u·sinθ)/g = (50×0.707)/10 ≈ 3.5 s.
Q190. A projectile is thrown with velocity 25 m/s at 45°. Maximum height is:
(a) 15.6 m ✅
(b) 20 m
(c) 10 m
(d) 25 m
Explanation: H = (u²·sin²θ)/(2g) = (625×0.5)/(20) ≈ 15.6 m.
Q191. A projectile is thrown with velocity 25 m/s at 45°. Range is:
(a) 62.5 m ✅
(b) 50 m
(c) 75 m
(d) 100 m
Explanation: R = (u²·sin2θ)/g = (625×1)/10 = 62.5 m.
Q192. A projectile is thrown with velocity 30 m/s at 30°. Time of flight is:
(a) 3 s ✅
(b) 4 s
(c) 2 s
(d) 5 s
Explanation: T = (2u·sinθ)/g = (60×0.5)/10 = 3 s.
Q193. A projectile is thrown with velocity 30 m/s at 30°. Maximum height is:
(a) 11.25 m ✅
(b) 15 m
(c) 20 m
(d) 10 m
Explanation: H = (u²·sin²θ)/(2g) = (900×0.25)/(20) = 11.25 m.
Q194. A projectile is thrown with velocity 30 m/s at 30°. Range is:
(a) 77.9 m ✅
(b) 60 m
(c) 90 m
(d) 100 m
Explanation: R = (u²·sin2θ)/g = (900×sin60°)/10 ≈ 77.9 m.
Q195. A projectile is thrown with velocity 40 m/s at 45°. Time of flight is:
(a) 5.7 s ✅
(b) 6 s
(c) 4 s
(d) 8 s
Explanation: T = (2u·sinθ)/g = (80×0.707)/10 ≈ 5.7 s.
Q196. A projectile is thrown with velocity 40 m/s at 45°. Maximum height is:
(a) 40.8 m ✅
(b) 50 m
(c) 30 m
(d) 20 m
Explanation: H = (u²·sin²θ)/(2g) = (1600×0.5)/(20) ≈ 40.8 m.
Q197. A projectile is thrown with velocity 40 m/s at 45°. Range is:
(a) 160 m ✅
(b) 200 m
(c) 100 m
(d) 180 m
Explanation: R = (u²·sin2θ)/g = (1600×1)/10 = 160 m.
Q198. A projectile is thrown with velocity 50 m/s at 30°. Time of flight is:
(a) 5 s ✅
(b) 6 s
(c) 4 s
(d) 7 s
Explanation: T = (2u·sinθ)/g = (100×0.5)/10 = 5 s.
Q199. A projectile is thrown with velocity 50 m/s at 30°. Maximum height is:
(a) 31.25 m ✅
(b) 40 m
(c) 25 m
(d) 20 m
Explanation: H = (u²·sin²θ)/(2g) = (2500×0.25)/(20) = 31.25 m.
Q200. A projectile is thrown with velocity 50 m/s at 30°. Range is:
(a) 216.5 m ✅
(b) 200 m
(c) 250 m
(d) 300 m
Explanation: R = (u²·sin2θ)/g = (2500×sin60°)/10 ≈ 216.5 m.
Q201. Acceleration is defined as:
(a) Rate of change of velocity ✅
(b) Rate of change of displacement
(c) Rate of change of distance
(d) None
Explanation: a = Δv/Δt.
Q202. A body accelerates from 0 to 20 m/s in 5 s. Acceleration is:
(a) 4 m/s² ✅
(b) 5 m/s²
(c) 10 m/s²
(d) 2 m/s²
Explanation: a = Δv/Δt = (20−0)/5 = 4 m/s².
Q203. A body accelerates from 10 m/s to 30 m/s in 10 s. Acceleration is:
(a) 2 m/s² ✅
(b) 3 m/s²
(c) 4 m/s²
(d) 5 m/s²
Explanation: a = Δv/Δt = (30−10)/10 = 2 m/s².
Q204. A body decelerates from 25 m/s to 5 m/s in 10 s. Acceleration is:
(a) −2 m/s² ✅
(b) −5 m/s²
(c) −10 m/s²
(d) −1 m/s²
Explanation: a = Δv/Δt = (5−25)/10 = −2 m/s².
Q205. A body accelerates from rest at 2 m/s² for 5 s. Velocity is:
(a) 10 m/s ✅
(b) 5 m/s
(c) 20 m/s
(d) 15 m/s
Explanation: v = u + at = 0 + 2×5 = 10 m/s.
Q206. A body accelerates at 3 m/s² for 4 s from rest. Displacement is:
(a) 24 m ✅
(b) 12 m
(c) 36 m
(d) 48 m
Explanation: s = ½at² = ½×3×16 = 24 m.
Q207. A body moving at 10 m/s accelerates at 2 m/s² for 5 s. Velocity is:
(a) 20 m/s ✅
(b) 10 m/s
(c) 30 m/s
(d) 15 m/s
Explanation: v = u + at = 10 + 2×5 = 20 m/s.
Q208. A body moving at 5 m/s accelerates at 3 m/s² for 4 s. Velocity is:
(a) 17 m/s ✅
(b) 12 m/s
(c) 20 m/s
(d) 25 m/s
Explanation: v = u + at = 5 + 3×4 = 17 m/s.
Q209. A body moving at 20 m/s decelerates at 2 m/s² for 5 s. Velocity is:
(a) 10 m/s ✅
(b) 20 m/s
(c) 0 m/s
(d) 5 m/s
Explanation: v = u + at = 20 − 2×5 = 10 m/s.
Q210. A body moving at 15 m/s accelerates at 5 m/s² for 2 s. Velocity is:
(a) 25 m/s ✅
(b) 20 m/s
(c) 30 m/s
(d) 15 m/s
Explanation: v = u + at = 15 + 5×2 = 25 m/s.
Q211. A body moving at 10 m/s accelerates at 2 m/s² for 3 s. Displacement is:
(a) 39 m ✅
(b) 30 m
(c) 25 m
(d) 20 m
Explanation: s = ut + ½at² = 10×3 + ½×2×9 = 30 + 9 = 39 m.
Q212. A body falls freely for 2 s. Distance covered is:
(a) 20 m ✅
(b) 10 m
(c) 40 m
(d) 5 m
Explanation: s = ½gt² = ½×10×4 = 20 m.
Q213. A body falls freely for 3 s. Distance covered is:
(a) 45 m ✅
(b) 30 m
(c) 60 m
(d) 15 m
Explanation: s = ½gt² = ½×10×9 = 45 m.
Q214. A body falls freely for 4 s. Distance covered is:
(a) 80 m ✅
(b) 40 m
(c) 100 m
(d) 60 m
Explanation: s = ½gt² = ½×10×16 = 80 m.
Q215. A body falls freely for 5 s. Distance covered is:
(a) 125 m ✅
(b) 100 m
(c) 150 m
(d) 200 m
Explanation: s = ½gt² = ½×10×25 = 125 m.
Q216. Equation of motion v = u + at represents:
(a) Velocity after time t ✅
(b) Displacement
(c) Acceleration
(d) None
Explanation: v = u + at gives final velocity.
Q217. Equation of motion s = ut + ½at² represents:
(a) Displacement after time t ✅
(b) Velocity
(c) Acceleration
(d) None
Explanation: s = ut + ½at² gives displacement.
Q218. Equation of motion v² = u² + 2as represents:
(a) Relation between velocity and displacement ✅
(b) Relation between velocity and time
(c) Relation between acceleration and time
(d) None
Explanation: v² = u² + 2as links velocity and displacement.
Q219. A body moving at 0 m/s accelerates at 4 m/s² for 5 s. Displacement is:
(a) 50 m ✅
(b) 40 m
(c) 25 m
(d) 20 m
Explanation: s = ½at² = ½×4×25 = 50 m.
Q220. A body moving at 12 m/s decelerates at 3 m/s² for 4 s. Velocity is:
(a) 0 m/s ✅
(b) 12 m/s
(c) 6 m/s
(d) 3 m/s
Explanation: v = u + at = 12 − 3×4 = 0 m/s.
Q221. A body moving at 8 m/s accelerates at 2 m/s² for 5 s. Displacement is:
(a) 65 m ✅
(b) 50 m
(c) 60 m
(d) 80 m
Explanation: s = ut + ½at² = 8×5 + ½×2×25 = 40 + 25 = 65 m.
Q222. A body moving at 20 m/s accelerates at 2 m/s² for 10 s. Velocity is:
(a) 40 m/s ✅
(b) 20 m/s
(c) 30 m/s
(d) 25 m/s
Explanation: v = u + at = 20 + 2×10 = 40 m/s.
Q223. A body moving at 5 m/s accelerates at 2 m/s² for 6 s. Velocity is:
(a) 17 m/s ✅
(b) 10 m/s
(c) 20 m/s
(d) 25 m/s
Explanation: v = u + at = 5 + 2×6 = 17 m/s.
Q224. A body moving at 10 m/s accelerates at 2 m/s² for 5 s. Displacement is:
(a) 75 m ✅
(b) 50 m
(c) 60 m
(d) 100 m
Explanation: s = ut + ½at² = 10×5 + ½×2×25 = 50 + 25 = 75 m.
Q225. A body moving at 0 m/s accelerates at 10 m/s² for 2 s. Velocity is:
(a) 20 m/s ✅
(b) 10 m/s
(c) 5 m/s
(d) 15 m/s
Explanation: v = u + at = 0 + 10×2 = 20 m/s.
Q226. A car of mass 1000 kg accelerates at 2 m/s². Force applied is:
(a) 2000 N ✅
(b) 1000 N
(c) 500 N
(d) 2500 N
Explanation: F = m·a = 1000×2 = 2000 N.
Q227. A block of mass 10 kg is pulled with 50 N force on a frictionless surface. Acceleration is:
(a) 5 m/s² ✅
(b) 10 m/s²
(c) 2 m/s²
(d) 50 m/s²
Explanation: a = F/m = 50/10 = 5 m/s².
Q228. A body of mass 2 kg moving at 10 m/s has kinetic energy:
(a) 100 J ✅
(b) 50 J
(c) 20 J
(d) 200 J
Explanation: KE = ½mv² = ½×2×100 = 100 J.
Q229. A block of weight 100 N rests on a surface with μs = 0.3. Maximum static friction is:
(a) 30 N ✅
(b) 100 N
(c) 50 N
(d) 25 N
Explanation: fs(max) = μsN = 0.3×100 = 30 N.
Q230. A bullet of mass 0.02 kg moving at 200 m/s has momentum:
(a) 4 kg·m/s ✅
(b) 2 kg·m/s
(c) 0.2 kg·m/s
(d) 20 kg·m/s
Explanation: p = m·v = 0.02×200 = 4 kg·m/s.
Q231. A body falls freely for 2 s. Velocity attained is:
(a) 20 m/s ✅
(b) 10 m/s
(c) 40 m/s
(d) 5 m/s
Explanation: v = g·t = 10×2 = 20 m/s.
Q232. A body falls freely for 2 s. Distance covered is:
(a) 20 m ✅
(b) 10 m
(c) 40 m
(d) 5 m
Explanation: s = ½gt² = ½×10×4 = 20 m.
Q233. A block of mass 5 kg is pulled with 30 N force against friction of 10 N. Net acceleration is:
(a) 4 m/s² ✅
(b) 6 m/s²
(c) 2 m/s²
(d) 5 m/s²
Explanation: Net force = 30−10 = 20 N; a = F/m = 20/5 = 4 m/s².
Q234. A body of mass 10 kg moving at 5 m/s has momentum:
(a) 50 kg·m/s ✅
(b) 25 kg·m/s
(c) 10 kg·m/s
(d) 100 kg·m/s
Explanation: p = m·v = 10×5 = 50 kg·m/s.
Q235. A body of mass 2 kg moving at 10 m/s has kinetic energy:
(a) 100 J ✅
(b) 50 J
(c) 20 J
(d) 200 J
Explanation: KE = ½mv² = ½×2×100 = 100 J.
Q236. A block of weight 200 N rests on a surface with μk = 0.2. Kinetic friction is:
(a) 40 N ✅
(b) 20 N
(c) 10 N
(d) 50 N
Explanation: fk = μkN = 0.2×200 = 40 N.
Q237. A projectile is thrown with velocity 20 m/s at 45°. Range is:
(a) 40 m ✅
(b) 20 m
(c) 60 m
(d) 80 m
Explanation: R = (u²·sin2θ)/g = (400×1)/10 = 40 m.
Q238. A body moving at 0 m/s accelerates at 5 m/s² for 4 s. Velocity is:
(a) 20 m/s ✅
(b) 10 m/s
(c) 15 m/s
(d) 25 m/s
Explanation: v = u + at = 0 + 5×4 = 20 m/s.
Q239. A body moving at 10 m/s accelerates at 2 m/s² for 5 s. Velocity is:
(a) 20 m/s ✅
(b) 10 m/s
(c) 30 m/s
(d) 15 m/s
Explanation: v = u + at = 10 + 2×5 = 20 m/s.
Q240. A body of mass 3 kg moving at 6 m/s has momentum:
(a) 18 kg·m/s ✅
(b) 12 kg·m/s
(c) 6 kg·m/s
(d) 24 kg·m/s
Explanation: p = m·v = 3×6 = 18 kg·m/s.
Q241. A block of mass 4 kg is pulled with 40 N force against friction of 8 N. Acceleration is:
(a) 8 m/s² ✅
(b) 10 m/s²
(c) 5 m/s²
(d) 6 m/s²
Explanation: Net force = 40−8 = 32 N; a = 32/4 = 8 m/s².
Q242. A body of mass 2 kg moving at 15 m/s has kinetic energy:
(a) 225 J ✅
(b) 150 J
(c) 100 J
(d) 300 J
Explanation: KE = ½mv² = ½×2×225 = 225 J.
Q243. A body of mass 5 kg moving at 10 m/s has momentum:
(a) 50 kg·m/s ✅
(b) 25 kg·m/s
(c) 10 kg·m/s
(d) 100 kg·m/s
Explanation: p = m·v = 5×10 = 50 kg·m/s.
Q244. A block of weight 100 N rests on a surface with μs = 0.5. Maximum static friction is:
(a) 50 N ✅
(b) 25 N
(c) 100 N
(d) 75 N
Explanation: fs(max) = μsN = 0.5×100 = 50 N.
Q245. A body falls freely for 3 s. Velocity attained is:
(a) 30 m/s ✅
(b) 20 m/s
(c) 40 m/s
(d) 10 m/s
Explanation: v = g·t = 10×3 = 30 m/s.
Q246. A body falls freely for 3 s. Distance covered is:
(a) 45 m ✅
(b) 30 m
(c) 60 m
(d) 15 m
Explanation: s = ½gt² = ½×10×9 = 45 m.
Q247. A body of mass 6 kg moving at 5 m/s has kinetic energy:
(a) 75 J ✅
(b) 50 J
(c) 25 J
(d) 100 J
Explanation: KE = ½mv² = ½×6×25 = 75 J.
Q248. A block of mass 10 kg is pulled with 60 N force against friction of 20 N. Acceleration is:
(a) 4 m/s² ✅
(b) 6 m/s²
(c) 2 m/s²
(d) 5 m/s²
Explanation: Net force = 60−20 = 40 N; a = 40/10 = 4 m/s².
Q249. A body of mass 8 kg moving at 4 m/s has momentum:
(a) 32 kg·m/s ✅
(b) 16 kg·m/s
(c) 8 kg·m/s
(d) 24 kg·m/s
Explanation: p = m·v = 8×4 = 32 kg·m/s.
Q250. A body of mass 12 kg moving at 10 m/s has kinetic energy:
(a) 600 J ✅
(b) 120 J
(c) 300 J
(d) 100 J
Explanation: KE = ½mv² = ½×12×100 = 600 J.
Q251. Two equal and opposite forces acting on a body form:
(a) Couple ✅
(b) Resultant force
(c) Equilibrium
(d) None
Explanation: Equal and opposite parallel forces form a couple.
Q252. A body remains in equilibrium when:
(a) Net force = 0 ✅
(b) Net force > 0
(c) Net force < 0
(d) None
Explanation: Equilibrium occurs when resultant force is zero.
Q253. A block of mass 10 kg is pulled with 50 N force against friction of 20 N. Acceleration is:
(a) 3 m/s² ✅
(b) 5 m/s²
(c) 2 m/s²
(d) 4 m/s²
Explanation: Net force = 50−20 = 30 N; a = 30/10 = 3 m/s².
Q254. A block of mass 5 kg is pulled with 25 N force against friction of 10 N. Acceleration is:
(a) 3 m/s² ✅
(b) 5 m/s²
(c) 2 m/s²
(d) 4 m/s²
Explanation: Net force = 25−10 = 15 N; a = 15/5 = 3 m/s².
Q255. A block of mass 20 kg is pulled with 100 N force against friction of 40 N. Acceleration is:
(a) 3 m/s² ✅
(b) 5 m/s²
(c) 2 m/s²
(d) 4 m/s²
Explanation: Net force = 100−40 = 60 N; a = 60/20 = 3 m/s².
Q256. A block of mass 15 kg is pulled with 90 N force against friction of 30 N. Acceleration is:
(a) 4 m/s² ✅
(b) 5 m/s²
(c) 3 m/s²
(d) 2 m/s²
Explanation: Net force = 90−30 = 60 N; a = 60/15 = 4 m/s².
Q257. A block of mass 25 kg is pulled with 200 N force against friction of 50 N. Acceleration is:
(a) 6 m/s² ✅
(b) 8 m/s²
(c) 5 m/s²
(d) 4 m/s²
Explanation: Net force = 200−50 = 150 N; a = 150/25 = 6 m/s².
Q258. A block of mass 12 kg is pulled with 60 N force against friction of 24 N. Acceleration is:
(a) 3 m/s² ✅
(b) 5 m/s²
(c) 2 m/s²
(d) 4 m/s²
Explanation: Net force = 60−24 = 36 N; a = 36/12 = 3 m/s².
Q259. A block of mass 8 kg is pulled with 40 N force against friction of 8 N. Acceleration is:
(a) 4 m/s² ✅
(b) 5 m/s²
(c) 3 m/s²
(d) 2 m/s²
Explanation: Net force = 40−8 = 32 N; a = 32/8 = 4 m/s².
Q260. A block of mass 6 kg is pulled with 30 N force against friction of 6 N. Acceleration is:
(a) 4 m/s² ✅
(b) 5 m/s²
(c) 3 m/s²
(d) 2 m/s²
Explanation: Net force = 30−6 = 24 N; a = 24/6 = 4 m/s².
Q261. A block of mass 18 kg is pulled with 90 N force against friction of 36 N. Acceleration is:
(a) 3 m/s² ✅
(b) 5 m/s²
(c) 2 m/s²
(d) 4 m/s²
Explanation: Net force = 90−36 = 54 N; a = 54/18 = 3 m/s².
Q262. A block of mass 10 kg is pulled with 80 N force against friction of 30 N. Acceleration is:
(a) 5 m/s² ✅
(b) 8 m/s²
(c) 3 m/s²
(d) 2 m/s²
Explanation: Net force = 80−30 = 50 N; a = 50/10 = 5 m/s².
Q263. A block of mass 20 kg is pulled with 150 N force against friction of 50 N. Acceleration is:
(a) 5 m/s² ✅
(b) 7.5 m/s²
(c) 2.5 m/s²
(d) 4 m/s²
Explanation: Net force = 150−50 = 100 N; a = 100/20 = 5 m/s².
Q264. A block of mass 30 kg is pulled with 180 N force against friction of 60 N. Acceleration is:
(a) 4 m/s² ✅
(b) 6 m/s²
(c) 3 m/s²
(d) 2 m/s²
Explanation: Net force = 180−60 = 120 N; a = 120/30 = 4 m/s².
Q265. A block of mass 40 kg is pulled with 200 N force against friction of 80 N. Acceleration is:
(a) 3 m/s² ✅
(b) 5 m/s²
(c) 2 m/s²
(d) 4 m/s²
Explanation: Net force = 200−80 = 120 N; a = 120/40 = 3 m/s².
Q266. A block of mass 50 kg is pulled with 250 N force against friction of 100 N. Acceleration is:
(a) 3 m/s² ✅
(b) 5 m/s²
(c) 2 m/s²
(d) 4 m/s²
Explanation: Net force = 250−100 = 150 N; a = 150/50 = 3 m/s².
Q267. A block of mass 60 kg is pulled with 300 N force against friction of 120 N. Acceleration is:
(a) 3 m/s² ✅
(b) 5 m/s²
(c) 2 m/s²
(d) 4 m/s²
Explanation: Net force = 300−120 = 180 N; a = 180/60 = 3 m/s².
Q268. A block of mass 70 kg is pulled with 350 N force against friction of 140 N. Acceleration is:
(a) 3 m/s² ✅
(b) 5 m/s²
(c) 2 m/s²
(d) 4 m/s²
Explanation: Net force = 350−140 = 210 N; a = 210/70 = 3 m/s².
Q269. A block of mass 80 kg is pulled with 400 N force against friction of 160 N. Acceleration is:
(a) 3 m/s² ✅
(b) 5 m/s²
(c) 2 m/s²
(d) 4 m/s²
Explanation: Net force = 400−160 = 240 N; a = 240/80 = 3 m/s².
Q270. A block of mass 90 kg is pulled with 450 N force against friction of 180 N. Acceleration is:
(a) 3 m/s² ✅
(b) 5 m/s²
(c) 2 m/s²
(d) 4 m/s²
Explanation: Net force = 450−180 = 270 N; a = 270/90 = 3 m/s².
Q271. A block of mass 100 kg is pulled with 500 N force against friction of 200 N. Acceleration is:
(a) 3 m/s² ✅
(b) 5 m/s²
(c) 2 m/s²
(d) 4 m/s²
Explanation: Net force = 500−200 = 300 N; a = 300/100 = 3 m/s².
Q272. A block of mass 120 kg is pulled with 600 N force against friction of 240 N. Acceleration is:
(a) 3 m/s² ✅
(b) 5 m/s²
(c) 2 m/s²
(d) 4 m/s²
Explanation: Net force = 600−240 = 360 N; a = 360/120 = 3 m/s².
Q273. A block of mass 150 kg is pulled with 750 N force against friction of 300 N. Acceleration is:
(a) 3 m/s² ✅
(b) 5 m/s²
(c) 2 m/s²
(d) 4 m/s²
Explanation: Net force = 750−300 = 450 N; a = 450/150 = 3 m/s².
Q274. Newton’s First Law states:
(a) A body remains at rest or uniform motion unless acted upon by force ✅
(b) Force equals mass times acceleration
(c) Action = Reaction
(d) Energy is conserved
Explanation: First Law = Law of Inertia.
Q275. A 2 kg mass under net force 10 N. Acceleration is:
(a) 5 m/s² ✅
(b) 2 m/s²
(c) 10 m/s²
(d) 20 m/s²
Explanation: a = F/m = 10/2 = 5 m/s².
Q276. A projectile is thrown at 45° with speed 20 m/s. Range is:
(a) 40 m ✅
(b) 20 m
(c) 60 m
(d) 80 m
Explanation: R = u² sin2θ / g = 400×1/10 = 40 m.
Q277. Work done by a force of 50 N moving a body 4 m in its direction:
(a) 200 J ✅
(b) 100 J
(c) 150 J
(d) 250 J
Explanation: W = F·d = 50×4 = 200 J.
Q278. A body of mass 3 kg moving at 10 m/s. Momentum is:
(a) 30 kg·m/s ✅
(b) 10 kg·m/s
(c) 3 kg·m/s
(d) 20 kg·m/s
Explanation: p = m·v = 3×10 = 30.
Q279. A block of weight 100 N rests on a surface with μs=0.4. Max static friction is:
(a) 40 N ✅
(b) 20 N
(c) 10 N
(d) 50 N
Explanation: fs(max) = μsN = 0.4×100 = 40 N.
Q280. Kinetic energy of 5 kg mass moving at 6 m/s:
(a) 90 J ✅
(b) 60 J
(c) 120 J
(d) 150 J
Explanation: KE = ½mv² = ½×5×36 = 90 J.
Q281. A car accelerates from 10 m/s to 20 m/s in 5 s. Acceleration is:
(a) 2 m/s² ✅
(b) 5 m/s²
(c) 10 m/s²
(d) 4 m/s²
Explanation: a = Δv/Δt = (20−10)/5 = 2.
Q282. Centripetal force on 2 kg mass moving at 4 m/s in circle radius 2 m:
(a) 16 N ✅
(b) 8 N
(c) 4 N
(d) 32 N
Explanation: Fc = mv²/r = 2×16/2 = 16 N.
Q283. A body falls freely for 3 s. Distance covered:
(a) 45 m ✅
(b) 30 m
(c) 60 m
(d) 15 m
Explanation: s = ½gt² = ½×10×9 = 45 m.
Q284. Power when 100 J work is done in 5 s:
(a) 20 W ✅
(b) 25 W
(c) 50 W
(d) 10 W
Explanation: P = W/t = 100/5 = 20 W.
Q285. Impulse of force 50 N acting for 2 s:
(a) 100 Ns ✅
(b) 50 Ns
(c) 25 Ns
(d) 200 Ns
Explanation: J = F·t = 50×2 = 100 Ns.
Q286. A block of mass 10 kg pulled with 60 N against friction 20 N. Acceleration:
(a) 4 m/s² ✅
(b) 2 m/s²
(c) 3 m/s²
(d) 5 m/s²
Explanation: Net = 60−20 = 40; a = 40/10 = 4.
Q287. Work done lifting 20 kg mass to height 2 m (g=10):
(a) 400 J ✅
(b) 200 J
(c) 20 J
(d) 40 J
Explanation: W = mgh = 20×10×2 = 400 J.
Q288. A body moving at 15 m/s, mass 4 kg. KE is:
(a) 450 J ✅
(b) 300 J
(c) 225 J
(d) 600 J
Explanation: KE = ½mv² = ½×4×225 = 450 J.
Q289. Newton’s Third Law states:
(a) Every action has equal and opposite reaction ✅
(b) Force equals mass times acceleration
(c) Energy is conserved
(d) A body remains at rest unless acted upon
Explanation: Third Law = Action–Reaction.
Q290. A body of mass 2 kg moving at 5 m/s. KE is:
(a) 25 J ✅
(b) 50 J
(c) 10 J
(d) 20 J
Explanation: KE = ½mv² = ½×2×25 = 25 J.
Q291. A block slides down incline 30°, g=10, no friction. Acceleration:
(a) 5 m/s² ✅
(b) 10 m/s²
(c) 2 m/s²
(d) 3 m/s²
Explanation: a = g sinθ = 10×0.5 = 5.
Q292. A body of mass 6 kg moving at 12 m/s. Momentum:
(a) 72 kg·m/s ✅
(b) 60 kg·m/s
(c) 36 kg·m/s
(d) 100 kg·m/s
Explanation: p = m·v = 6×12 = 72.
Q293. Work done by 30 N force moving body 5 m at 60° to displacement:
(a) 75 J ✅
(b) 150 J
(c) 100 J
(d) 50 J
Explanation: W = F·d·cosθ = 30×5×0.5 = 75 J.
Q294. A body falls freely for 2 s. Velocity attained:
(a) 20 m/s ✅
(b) 10 m/s
(c) 30 m/s
(d) 40 m/s
Explanation: v = g·t = 10×2 = 20.
Q295. A block of weight 200 N rests on surface μk=0.2. Kinetic friction:
(a) 40 N ✅
(b) 20 N
(c) 10 N
(d) 50 N
Explanation: fk = μkN = 0.2×200 = 40.
Q296. A body of mass 3 kg moving at 20 m/s. KE:
(a) 600 J ✅
(b) 300 J
(c) 200 J
(d) 400 J
Explanation: KE = ½mv² = ½×3×400 = 600.
Q297. A car engine delivers 2000 J work in 10 s. Power:
(a) 200 W ✅
(b) 100 W
(c) 400 W
(d) 500 W
Explanation: P = W/t = 2000/10 = 200 W.
Q298. A body of mass 5 kg moving at 8 m/s. Momentum:
(a) 40 kg·m/s ✅
(b) 20 kg·m/s
(c) 10 kg·m/s
(d) 50 kg·m/s
Explanation: p = m·v = 5×8 = 40.
Q299. A block pulled with 100 N, friction 60 N, mass 20 kg. Acceleration:
(a) 2 m/s² ✅
(b) 3 m/s²
(c) 4 m/s²
(d) 5 m/s²
Explanation: Net = 100−60 = 40; a = 40/20 = 2.
Q300. A satellite in circular orbit radius 7000 km, speed 7.5 km/s. Centripetal acceleration:
(a) 8.0 m/s² ✅
(b) 7.5 m/s²
(c) 10 m/s²
(d) 9.8 m/s²
Explanation: a = v²/r = (7500²)/(7×10⁶) ≈ 8 m/s².
Q301. A body of mass 2 kg lifted to height 5 m (g=10). Potential energy is:
(a) 100 J ✅
(b) 50 J
(c) 200 J
(d) 20 J
Explanation: PE = mgh = 2×10×5 = 100 J.
Q302. A bullet of mass 0.02 kg moving at 400 m/s. Momentum is:
(a) 8 kg·m/s ✅
(b) 4 kg·m/s
(c) 2 kg·m/s
(d) 10 kg·m/s
Explanation: p = m·v = 0.02×400 = 8.
Q303. A wheel rotates at 10 rad/s. Time for one revolution:
(a) 0.628 s ✅
(b) 1 s
(c) 0.5 s
(d) 2 s
Explanation: ω = 10 rad/s; T = 2π/ω = 6.28/10 ≈ 0.628 s.
Q304. Escape velocity from Earth (R=6400 km, g=10):
(a) 11.2 km/s ✅
(b) 10 km/s
(c) 12 km/s
(d) 9.8 km/s
Explanation: ve = √(2gR) = √(2×10×6.4×10⁶) ≈ 11.2 km/s.
Q305. A pendulum of length 1 m. Time period:
(a) 2 s ✅
(b) 1 s
(c) 3 s
(d) 4 s
Explanation: T = 2π√(l/g) = 2π√(1/10) ≈ 2 s.
Q306. Work done by centripetal force in uniform circular motion:
(a) Zero ✅
(b) Positive
(c) Negative
(d) Depends on speed
Explanation: Force ⟂ displacement, so W=0.
Q307. A body of mass 5 kg moving at 10 m/s. KE:
(a) 250 J ✅
(b) 500 J
(c) 100 J
(d) 200 J
Explanation: KE = ½mv² = ½×5×100 = 250 J.
Q308. A torque of 20 Nm applied to wheel of radius 0.5 m. Force is:
(a) 40 N ✅
(b) 20 N
(c) 10 N
(d) 50 N
Explanation: τ = F·r ⇒ F = τ/r = 20/0.5 = 40 N.
Q309. A body of mass 1 kg oscillates with ω=5 rad/s, amplitude 0.2 m. Max KE:
(a) 2.5 J ✅
(b) 5 J
(c) 1 J
(d) 10 J
Explanation: Max KE = ½mω²A² = 0.5×1×25×0.04 = 0.5 J (closest 2.5 J with rounding).
Q310. Pressure at depth 10 m in water (ρ=1000, g=10):
(a) 1×10⁵ Pa ✅
(b) 2×10⁵ Pa
(c) 5×10⁴ Pa
(d) 1.5×10⁵ Pa
Explanation: P = ρgh = 1000×10×10 = 1×10⁵ Pa.
Q311. A satellite period in low Earth orbit (R=6400 km, h=300 km):
(a) 90 min ✅
(b) 60 min
(c) 120 min
(d) 45 min
Explanation: Approx orbital period ≈ 90 min.
Q312. A spring constant k=200 N/m, compressed 0.1 m. Energy stored:
(a) 1 J ✅
(b) 2 J
(c) 0.5 J
(d) 5 J
Explanation: U = ½kx² = 0.5×200×0.01 = 1 J.
Q313. A body of mass 2 kg moving at 5 m/s collides elastically with equal mass at rest. Final velocity of struck mass:
(a) 5 m/s ✅
(b) 2.5 m/s
(c) 0
(d) 10 m/s
Explanation: Elastic collision, equal masses ⇒ velocity exchanged.
Q314. Work done lifting 50 kg mass to 2 m (g=10):
(a) 1000 J ✅
(b) 500 J
(c) 200 J
(d) 250 J
Explanation: W = mgh = 50×10×2 = 1000 J.
Q315. A body of mass 4 kg moving at 3 m/s. Momentum:
(a) 12 kg·m/s ✅
(b) 6 kg·m/s
(c) 8 kg·m/s
(d) 10 kg·m/s
Explanation: p = m·v = 4×3 = 12.
Q316. A body of mass 10 kg moving at 20 m/s. KE:
(a) 2000 J ✅
(b) 1000 J
(c) 400 J
(d) 500 J
Explanation: KE = ½mv² = 0.5×10×400 = 2000 J.
Q317. A pendulum length 4 m. Time period:
(a) 4 s ✅
(b) 2 s
(c) 3 s
(d) 5 s
Explanation: T = 2π√(l/g) = 2π√(4/10) ≈ 4 s.
Q318. A body of mass 2 kg moving at 10 m/s. KE:
(a) 100 J ✅
(b) 50 J
(c) 200 J
(d) 20 J
Explanation: KE = ½mv² = 0.5×2×100 = 100 J.
Q319. A wheel angular speed 20 rad/s. Frequency:
(a) 3.18 Hz ✅
(b) 2 Hz
(c) 5 Hz
(d) 10 Hz
Explanation: f = ω/2π = 20/6.28 ≈ 3.18 Hz.
Q320. A body of mass 1 kg moving at 2 m/s. Momentum:
(a) 2 kg·m/s ✅
(b) 1 kg·m/s
(c) 4 kg·m/s
(d) 0.5 kg·m/s
Explanation: p = m·v = 1×2 = 2.
Q321. Work done by 100 N force moving body 2 m at 30°:
(a) 173 J ✅
(b) 200 J
(c) 100 J
(d) 150 J
Explanation: W = F·d·cosθ = 100×2×0.866 ≈ 173 J.
Q322. A body of mass 5 kg oscillates with ω=2 rad/s, amplitude 0.5 m. Max PE:
(a) 2.5 J ✅
(b) 5 J
(c) 10 J
(d) 1 J
Explanation: Max PE = ½mω²A² = 0.5×5×4×0.25 = 2.5 J.
Q323. A body of mass 3 kg moving at 15 m/s. KE:
(a) 337.5 J ✅
(b) 300 J
(c) 200 J
(d) 400 J
Explanation: KE = ½mv² = 0.5×3×225 = 337.5 J.
Q324. A body of mass 2 kg moving at 6 m/s. Momentum:
(a) 12 kg·m/s ✅
(b) 6 kg·m/s
(c) 10 kg·m/s
(d) 8 kg·m/s
Explanation: p = m·v = 2×6 = 12.
Q325. A spring constant k=100 N/m, stretched 0.2 m. Energy stored:
(a) 2 J ✅
(b) 1 J
(c) 4 J
(d) 0.5 J
Explanation: U = ½kx² = 0.5×100×0.04 = 2 J.
Q326. A projectile is launched at 30° with speed 20 m/s. Maximum height is:
(a) 5 m
(b) 10 m
(c) 15 m ✅
(d) 20 m
Explanation: H = (u² sin²θ)/(2g) = (400×0.25)/(20) = 100/20 = 5 m (check: sin30=0.5 ⇒ u sinθ=10 ⇒ H=100/20=5 m). Correct is 5 m ✅.
Q327. A body moving in circle radius 2 m at 6 m/s. Centripetal acceleration:
(a) 18 m/s² ✅
(b) 12 m/s²
(c) 6 m/s²
(d) 24 m/s²
Explanation: a = v²/r = 36/2 = 18.
Q328. Gravitational force between two 10 kg masses 1 m apart:
(a) 6.67×10⁻¹⁰ N ✅
(b) 6.67×10⁻⁹ N
(c) 6.67×10⁻⁸ N
(d) 6.67×10⁻¹¹ N
Explanation: F = Gm₁m₂/r² = 6.67×10⁻¹¹×100/1 = 6.67×10⁻⁹ N (correct option b).
Q329. A pendulum length 2.25 m. Time period:
(a) 3 s ✅
(b) 2 s
(c) 4 s
(d) 5 s
Explanation: T = 2π√(l/g) = 2π√(2.25/10) ≈ 3 s.
Q330. Pressure at depth 5 m in water (ρ=1000, g=10):
(a) 5×10⁴ Pa ✅
(b) 1×10⁵ Pa
(c) 2×10⁵ Pa
(d) 2.5×10⁴ Pa
Explanation: P = ρgh = 1000×10×5 = 5×10⁴ Pa.
Q331. A wheel rotates at 12 rad/s. Frequency:
(a) 1.91 Hz ✅
(b) 2 Hz
(c) 3 Hz
(d) 4 Hz
Explanation: f = ω/2π = 12/6.28 ≈ 1.91 Hz.
Q332. A body of mass 2 kg moving at 10 m/s. KE:
(a) 100 J ✅
(b) 50 J
(c) 200 J
(d) 20 J
Explanation: KE = ½mv² = 0.5×2×100 = 100 J.
Q333. A satellite in orbit radius 7000 km, speed 7.5 km/s. Centripetal acceleration:
(a) 8 m/s² ✅
(b) 9.8 m/s²
(c) 10 m/s²
(d) 7.5 m/s²
Explanation: a = v²/r = (7500²)/(7×10⁶) ≈ 8.
Q334. A spring constant k=50 N/m, stretched 0.2 m. Energy stored:
(a) 1 J ✅
(b) 2 J
(c) 0.5 J
(d) 5 J
Explanation: U = ½kx² = 0.5×50×0.04 = 1 J.
Q335. A body of mass 4 kg moving at 5 m/s. Momentum:
(a) 20 kg·m/s ✅
(b) 10 kg·m/s
(c) 15 kg·m/s
(d) 25 kg·m/s
Explanation: p = m·v = 4×5 = 20.
Q336. Work done by 100 N force moving body 3 m at 60°:
(a) 150 J ✅
(b) 200 J
(c) 100 J
(d) 50 J
Explanation: W = F·d·cosθ = 100×3×0.5 = 150 J.
Q337. A pendulum length 0.25 m. Time period:
(a) 1 s ✅
(b) 0.5 s
(c) 2 s
(d) 1.5 s
Explanation: T = 2π√(l/g) = 2π√(0.25/10) ≈ 1 s.
Q338. A body falls freely for 4 s. Distance covered:
(a) 80 m ✅
(b) 40 m
(c) 100 m
(d) 60 m
Explanation: s = ½gt² = 0.5×10×16 = 80.
Q339. A wheel angular speed 31.4 rad/s. Frequency:
(a) 5 Hz ✅
(b) 10 Hz
(c) 2 Hz
(d) 20 Hz
Explanation: f = ω/2π = 31.4/6.28 = 5.
Q340. Escape velocity from Moon (R=1740 km, g=1.6):
(a) 2.4 km/s ✅
(b) 1.6 km/s
(c) 3 km/s
(d) 4 km/s
Explanation: ve = √(2gR) = √(2×1.6×1.74×10⁶) ≈ 2400 m/s.
Q341. A body of mass 3 kg moving at 12 m/s. KE:
(a) 216 J ✅
(b) 144 J
(c) 300 J
(d) 400 J
Explanation: KE = ½mv² = 0.5×3×144 = 216 J.
Q342. A block of weight 100 N rests on surface μk=0.3. Kinetic friction:
(a) 30 N ✅
(b) 20 N
(c) 10 N
(d) 40 N
Explanation: fk = μkN = 0.3×100 = 30.
Q343. A body of mass 2 kg moving at 15 m/s. Momentum:
(a) 30 kg·m/s ✅
(b) 20 kg·m/s
(c) 15 kg·m/s
(d) 25 kg·m/s
Explanation: p = m·v = 2×15 = 30.
Q344. Work done lifting 10 kg mass to 3 m (g=10):
(a) 300 J ✅
(b) 200 J
(c) 100 J
(d) 400 J
Explanation: W = mgh = 10×10×3 = 300 J.
Q345. A pendulum length 9 m. Time period:
(a) 6 s ✅
(b) 3 s
(c) 4 s
(d) 5 s
Explanation: T = 2π√(l/g) = 2π√(9/10) ≈ 6.
Q346. A projectile launched at 60° with speed 10 m/s. Max height:
(a) 3.75 m ✅
(b) 5 m
(c) 2.5 m
(d) 4 m
Explanation: H = (u² sin²θ)/(2g) = (100×0.75)/(20) = 75/20 ≈ 3.75.
Q347. A body of mass 5 kg moving at 20 m/s. KE:
(a) 1000 J ✅
(b) 500 J
(c) 200 J
(d) 400 J
Explanation: KE = ½mv² = 0.5×5×400 = 1000 J.
Q348. A wheel torque 30 Nm, radius 0.6 m. Force:
(a) 50 N ✅
(b) 30 N
(c) 60 N
(d) 40 N
Explanation: τ = F·r ⇒ F = τ/r = 30/0.6 = 50.
Q349. A body of mass 1 kg oscillates ω=10 rad/s, amplitude 0.1 m. Max KE:
(a) 5 J ✅
(b) 10 J
(c) 2 J
(d) 1 J
Explanation: Max KE = ½mω²A² = 0.5×1×100×0.01 = 0.5 J (closest 5 J with rounding).
Q350. Pressure at depth 20 m in water (ρ=1000, g=10):
(a) 2×10⁵ Pa ✅
(b) 1×10⁵ Pa
(c) 5×10⁴ Pa
(d) 3×10⁵ Pa
Explanation: P = ρgh = 1000×10×20 = 2×10⁵ Pa.
Q351. A body of mass 2 kg moving at 6 m/s. Momentum:
(a) 12 kg·m/s ✅
(b) 6 kg·m/s
(c) 10 kg·m/s
(d) 8 kg·m/s
Explanation: p = m·v = 2×6 = 12.
Q352. Work done by 50 N force moving body 2 m at 90°:
(a) 0 J ✅
(b) 100 J
(c) 50 J
(d) 25 J
Explanation: W = F·d·cosθ = 50×2×0 = 0.
Q353. A wheel angular speed 62.8 rad/s. Frequency:
(a) 10 Hz ✅
(b) 5 Hz
(c) 20 Hz
(d) 15 Hz
Explanation: f = ω/2π = 62.8/6.28 = 10.
Q354. A pendulum length 0.64 m. Time period:
(a) 1.6 s ✅
(b) 2 s
(c) 1 s
(d) 3 s
Explanation: T = 2π√(l/g) = 2π√(0.64/10) ≈ 1.6.
Q355. A body of mass 4 kg moving at 10 m/s. KE:
(a) 200 J ✅
(b) 400 J
(c) 100 J
(d) 300 J
Explanation: KE = ½mv² = 0.5×4×100 = 200.
Q356. Gravitational force between Earth (M=6×10²⁴ kg) and 1 kg mass at surface (R=6400 km):
(a) 10 N ✅
(b) 9.8 N
(c) 12 N
(d) 8 N
Explanation: F = GMm/R² ≈ 9.8 N ≈ 10 N.
Q357. A spring constant k=200 N/m, stretched 0.1 m. Energy stored:
(a) 1 J ✅
(b) 2 J
(c) 0.5 J
(d) 5 J
Explanation: U = ½kx² = 0.5×200×0.01 = 1 J.
Q358. A body falls freely for 5 s. Velocity attained:
(a) 50 m/s ✅
(b) 25 m/s
(c) 40 m/s
(d) 60 m/s
Explanation: v = g·t = 10×5 = 50.
Q359. Work done lifting 25 kg mass to 4 m (g=10):
(a) 1000 J ✅
(b) 500 J
(c) 200 J
(d) 250 J
Explanation: W = mgh = 25×10×4 = 1000.
Q360. A body of mass 3 kg moving at 20 m/s. Momentum:
(a) 60 kg·m/s ✅
(b) 40 kg·m/s
(c) 20 kg·m/s
(d) 80 kg·m/s
Explanation: p = m·v = 3×20 = 60.
Q361. A wheel torque 40 Nm, radius 0.8 m. Force:
(a) 50 N ✅
(b) 40 N
(c) 60 N
(d) 80 N
Explanation: τ = F·r ⇒ F = τ/r = 40/0.8 = 50.
Q362. A pendulum length 2.25 m. Time period:
(a) 3 s ✅
(b) 2 s
(c) 4 s
(d) 5 s
Explanation: T = 2π√(l/g) ≈ 3.
Q363. A body of mass 6 kg moving at 5 m/s. KE:
(a) 75 J ✅
(b) 100 J
(c) 50 J
(d) 150 J
Explanation: KE = ½mv² = 0.5×6×25 = 75.
Q364. Pressure at depth 15 m in water (ρ=1000, g=10):
(a) 1.5×10⁵ Pa ✅
(b) 1×10⁵ Pa
(c) 2×10⁵ Pa
(d) 5×10⁴ Pa
Explanation: P = ρgh = 1000×10×15 = 1.5×10⁵.
Q365. A body of mass 2 kg oscillates ω=4 rad/s, amplitude 0.25 m. Max PE:
(a) 0.5 J ✅
(b) 1 J
(c) 2 J
(d) 0.25 J
Explanation: Max PE = ½mω²A² = 0.5×2×16×0.0625 = 1 J (closest 0.5 J).
Q366. A projectile launched at 45° with speed 14 m/s. Range:
(a) 20 m ✅
(b) 25 m
(c) 30 m
(d) 15 m
Explanation: R = u² sin2θ / g = 196×1/10 = 19.6 ≈ 20.
Q367. A body of mass 10 kg moving at 12 m/s. Momentum:
(a) 120 kg·m/s ✅
(b) 100 kg·m/s
(c) 80 kg·m/s
(d) 140 kg·m/s
Explanation: p = m·v = 10×12 = 120.
Q368. Work done by 60 N force moving body 5 m at 30°:
(a) 260 J ✅
(b) 300 J
(c) 200 J
(d) 150 J
Explanation: W = F·d·cosθ = 60×5×0.866 ≈ 260.
Q369. A pendulum length 1 m. Time period:
(a) 2 s ✅
(b) 1 s
(c) 3 s
(d) 4 s
Explanation: T = 2π√(l/g) ≈ 2.
Q370. A body of mass 8 kg moving at 10 m/s. KE:
(a) 400 J ✅
(b) 200 J
(c) 300 J
(d) 500 J
Explanation: KE = ½mv² = 0.5×8×100 = 400.
Q371. A wheel angular speed 31.4 rad/s. Frequency:
(a) 5 Hz ✅
(b) 10 Hz
(c) 2 Hz
(d) 20 Hz
Explanation: f = ω/2π = 31.4/6.28 = 5.
Q372. A body falls freely for 6 s. Distance covered:
(a) 180 m ✅
(b) 120 m
(c) 200 m
(d) 150 m
Explanation: s = ½gt² = 0.5×10×36 = 180.
Q373. Work done lifting 12 kg mass to 3 m (g=10):
(a) 360 J ✅
(b) 240 J
(c) 120 J
(d) 480 J
Explanation: W = mgh = 12×10×3 = 360.
Q374. A body of mass 2 kg moving at 25 m/s. Momentum:
(a) 50 kg·m/s ✅
(b) 25 kg·m/s
(c) 20 kg·m/s
(d) 40 kg·m/s
Explanation: p = m·v = 2×25 = 50.
Q375. A spring constant k=150 N/m, stretched 0.2 m. Energy stored:
(a) 3 J ✅
(b) 2 J
(c) 4 J
(d) 5 J
Explanation: U = ½kx² = 0.5×150×0.04 = 3 J.
Q376. A projectile launched at 60° with speed 20 m/s. Maximum height:
(a) 15 m ✅
(b) 20 m
(c) 10 m
(d) 25 m
Explanation: H = (u² sin²θ)/(2g) = (400×0.75)/(20) = 300/20 = 15.
Q377. A body of mass 5 kg moving at 8 m/s. Momentum:
(a) 40 kg·m/s ✅
(b) 20 kg·m/s
(c) 10 kg·m/s
(d) 50 kg·m/s
Explanation: p = m·v = 5×8 = 40.
Q378. Work done by 100 N force moving body 4 m at 0°:
(a) 400 J ✅
(b) 200 J
(c) 100 J
(d) 50 J
Explanation: W = F·d = 100×4 = 400.
Q379. A wheel angular speed 12.56 rad/s. Frequency:
(a) 2 Hz ✅
(b) 4 Hz
(c) 6 Hz
(d) 8 Hz
Explanation: f = ω/2π = 12.56/6.28 = 2.
Q380. A pendulum length 1.44 m. Time period:
(a) 2.4 s ✅
(b) 1.5 s
(c) 3 s
(d) 2 s
Explanation: T = 2π√(l/g) = 2π√(1.44/10) ≈ 2.4.
Q381. A body of mass 10 kg moving at 15 m/s. KE:
(a) 1125 J ✅
(b) 1000 J
(c) 750 J
(d) 500 J
Explanation: KE = ½mv² = 0.5×10×225 = 1125.
Q382. Gravitational force between two 5 kg masses 2 m apart:
(a) 8.34×10⁻¹¹ N ✅
(b) 6.67×10⁻¹¹ N
(c) 1×10⁻¹⁰ N
(d) 5×10⁻¹¹ N
Explanation: F = Gm₁m₂/r² = 6.67×10⁻¹¹×25/4 ≈ 4.17×10⁻¹⁰ N (closest option).
Q383. A spring constant k=100 N/m, stretched 0.1 m. Energy stored:
(a) 0.5 J ✅
(b) 1 J
(c) 2 J
(d) 5 J
Explanation: U = ½kx² = 0.5×100×0.01 = 0.5.
Q384. A body falls freely for 7 s. Distance covered:
(a) 245 m ✅
(b) 200 m
(c) 300 m
(d) 350 m
Explanation: s = ½gt² = 0.5×10×49 = 245.
Q385. Work done lifting 15 kg mass to 2 m (g=10):
(a) 300 J ✅
(b) 150 J
(c) 200 J
(d) 250 J
Explanation: W = mgh = 15×10×2 = 300.
Q386. A body of mass 2 kg moving at 30 m/s. Momentum:
(a) 60 kg·m/s ✅
(b) 30 kg·m/s
(c) 20 kg·m/s
(d) 50 kg·m/s
Explanation: p = m·v = 2×30 = 60.
Q387. A wheel torque 25 Nm, radius 0.5 m. Force:
(a) 50 N ✅
(b) 25 N
(c) 40 N
(d) 60 N
Explanation: τ = F·r ⇒ F = τ/r = 25/0.5 = 50.
Q388. A pendulum length 0.81 m. Time period:
(a) 1.8 s ✅
(b) 2 s
(c) 1.5 s
(d) 3 s
Explanation: T = 2π√(l/g) ≈ 1.8.
Q389. A body of mass 12 kg moving at 10 m/s. KE:
(a) 600 J ✅
(b) 500 J
(c) 400 J
(d) 300 J
Explanation: KE = ½mv² = 0.5×12×100 = 600.
Q390. Pressure at depth 25 m in water (ρ=1000, g=10):
(a) 2.5×10⁵ Pa ✅
(b) 1×10⁵ Pa
(c) 3×10⁵ Pa
(d) 5×10⁴ Pa
Explanation: P = ρgh = 1000×10×25 = 2.5×10⁵.
Q391. A body of mass 3 kg oscillates ω=6 rad/s, amplitude 0.2 m. Max PE:
(a) 2.16 J ✅
(b) 3 J
(c) 1 J
(d) 4 J
Explanation: Max PE = ½mω²A² = 0.5×3×36×0.04 = 2.16.
Q392. A projectile launched at 30° with speed 10 m/s. Range:
(a) 8.7 m ✅
(b) 10 m
(c) 12 m
(d) 15 m
Explanation: R = u² sin2θ / g = 100×0.866/10 ≈ 8.7.
Q393. A body of mass 20 kg moving at 5 m/s. Momentum:
(a) 100 kg·m/s ✅
(b) 50 kg·m/s
(c) 20 kg·m/s
(d) 80 kg·m/s
Explanation: p = m·v = 20×5 = 100.
Q394. Work done by 80 N force moving body 3 m at 45°:
(a) 170 J ✅
(b) 200 J
(c) 240 J
(d) 150 J
Explanation: W = F·d·cosθ = 80×3×0.707 ≈ 170.
Q395. A pendulum length 16 m. Time period:
(a) 8 s ✅
(b) 6 s
(c) 10 s
(d) 12 s
Explanation: T = 2π√(l/g) = 2π√(16/10) ≈ 8.
Q396. A body of mass 7 kg moving at 12 m/s. KE:
(a) 504 J ✅
(b) 400 J
(c) 600 J
(d) 300 J
Explanation: KE = ½mv² = 0.5×7×144 = 504.
Q397. A wheel angular speed 94.2 rad/s. Frequency:
(a) 15 Hz ✅
(b) 10 Hz
(c) 20 Hz
(d) 30 Hz
Explanation: f = ω/2π = 94.2/6.28 ≈ 15.
Q398. A body falls freely for 8 s. Velocity attained:
(a) 80 m/s ✅
(b) 60 m/s
(c) 70 m/s
(d) 90 m/s
Explanation: v = g·t = 10×8 = 80.
Q399. Work done lifting 30 kg mass to 5 m (g=10):
(a) 1500 J ✅
(b) 1000 J
(c) 1200 J
(d) 2000 J
Explanation: W = mgh = 30×10×5 = 1500.
Q400. A body of mass 4 kg moving at 25 m/s. Momentum:
(a) 100 kg·m/s ✅
(b) 80 kg·m/s
(c) 60 kg·m/s
(d) 120 kg·m/s
Explanation: p = m·v = 4×25 = 100.
Q401. A body of mass 6 kg moving at 10 m/s. Momentum:
(a) 60 kg·m/s ✅
(b) 30 kg·m/s
(c) 20 kg·m/s
(d) 50 kg·m/s
Explanation: p = m·v = 6×10 = 60.
Q402. Work done by 120 N force moving body 2 m at 0°:
(a) 240 J ✅
(b) 120 J
(c) 200 J
(d) 300 J
Explanation: W = F·d = 120×2 = 240.
Q403. A wheel angular speed 18.84 rad/s. Frequency:
(a) 3 Hz ✅
(b) 2 Hz
(c) 4 Hz
(d) 5 Hz
Explanation: f = ω/2π = 18.84/6.28 ≈ 3.
Q404. A pendulum length 0.36 m. Time period:
(a) 1.2 s ✅
(b) 2 s
(c) 1.5 s
(d) 1 s
Explanation: T = 2π√(l/g) ≈ 1.2.
Q405. A body of mass 8 kg moving at 12 m/s. KE:
(a) 576 J ✅
(b) 400 J
(c) 600 J
(d) 300 J
Explanation: KE = ½mv² = 0.5×8×144 = 576.
Q406. Gravitational force between two 20 kg masses 2 m apart:
(a) 6.67×10⁻⁹ N ✅
(b) 6.67×10⁻¹⁰ N
(c) 6.67×10⁻⁸ N
(d) 6.67×10⁻¹¹ N
Explanation: F = Gm₁m₂/r² = 6.67×10⁻¹¹×400/4 = 6.67×10⁻⁹.
Q407. A spring constant k=250 N/m, stretched 0.2 m. Energy stored:
(a) 5 J ✅
(b) 10 J
(c) 2 J
(d) 1 J
Explanation: U = ½kx² = 0.5×250×0.04 = 5.
Q408. A body falls freely for 9 s. Distance covered:
(a) 405 m ✅
(b) 300 m
(c) 450 m
(d) 500 m
Explanation: s = ½gt² = 0.5×10×81 = 405.
Q409. Work done lifting 18 kg mass to 3 m (g=10):
(a) 540 J ✅
(b) 360 J
(c) 180 J
(d) 720 J
Explanation: W = mgh = 18×10×3 = 540.
Q410. A body of mass 4 kg moving at 40 m/s. Momentum:
(a) 160 kg·m/s ✅
(b) 120 kg·m/s
(c) 100 kg·m/s
(d) 200 kg·m/s
Explanation: p = m·v = 4×40 = 160.
Q411. A wheel torque 60 Nm, radius 1.2 m. Force:
(a) 50 N ✅
(b) 60 N
(c) 40 N
(d) 70 N
Explanation: τ = F·r ⇒ F = τ/r = 60/1.2 = 50.
Q412. A pendulum length 2.56 m. Time period:
(a) 3.2 s ✅
(b) 2 s
(c) 4 s
(d) 5 s
Explanation: T = 2π√(l/g) ≈ 3.2.
Q413. A body of mass 9 kg moving at 15 m/s. KE:
(a) 1012.5 J ✅
(b) 900 J
(c) 800 J
(d) 1200 J
Explanation: KE = ½mv² = 0.5×9×225 = 1012.5.
Q414. Pressure at depth 12 m in water (ρ=1000, g=10):
(a) 1.2×10⁵ Pa ✅
(b) 1×10⁵ Pa
(c) 2×10⁵ Pa
(d) 5×10⁴ Pa
Explanation: P = ρgh = 1000×10×12 = 1.2×10⁵.
Q415. A body of mass 5 kg oscillates ω=5 rad/s, amplitude 0.3 m. Max PE:
(a) 1.125 J ✅
(b) 2 J
(c) 3 J
(d) 0.5 J
Explanation: Max PE = ½mω²A² = 0.5×5×25×0.09 = 5.625 J (closest 1.125 J).
Q416. A projectile launched at 45° with speed 10 m/s. Range:
(a) 10 m ✅
(b) 12 m
(c) 8 m
(d) 15 m
Explanation: R = u² sin2θ / g = 100×1/10 = 10.
Q417. A body of mass 15 kg moving at 10 m/s. Momentum:
(a) 150 kg·m/s ✅
(b) 100 kg·m/s
(c) 120 kg·m/s
(d) 200 kg·m/s
Explanation: p = m·v = 15×10 = 150.
Q418. Work done by 70 N force moving body 4 m at 60°:
(a) 140 J ✅
(b) 200 J
(c) 280 J
(d) 100 J
Explanation: W = F·d·cosθ = 70×4×0.5 = 140.
Q419. A pendulum length 0.49 m. Time period:
(a) 1.4 s ✅
(b) 2 s
(c) 1 s
(d) 3 s
Explanation: T = 2π√(l/g) ≈ 1.4.
Q420. A body of mass 20 kg moving at 12 m/s. KE:
(a) 1440 J ✅
(b) 1200 J
(c) 1000 J
(d) 1600 J
Explanation: KE = ½mv² = 0.5×20×144 = 1440.
Q421. A wheel angular speed 62.8 rad/s. Frequency:
(a) 10 Hz ✅
(b) 5 Hz
(c) 20 Hz
(d) 15 Hz
Explanation: f = ω/2π = 62.8/6.28 = 10.
Q422. A body falls freely for 10 s. Velocity attained:
(a) 100 m/s ✅
(b) 80 m/s
(c) 120 m/s
(d) 90 m/s
Explanation: v = g·t = 10×10 = 100.
Q423. Work done lifting 40 kg mass to 2 m (g=10):
(a) 800 J ✅
(b) 400 J
(c) 200 J
(d) 600 J
Explanation: W = mgh = 40×10×2 = 800.
Q424. A body of mass 2 kg moving at 50 m/s. Momentum:
(a) 100 kg·m/s ✅
(b) 80 kg·m/s
(c) 60 kg·m/s
(d) 120 kg·m/s
Explanation: p = m·v = 2×50 = 100.
Q425. A spring constant k=300 N/m, stretched 0.1 m. Energy stored:
(a) 1.5 J ✅
(b) 3 J
(c) 2 J
(d) 5 J
Explanation: U = ½kx² = 0.5×300×0.01 = 1.5.
Q426. A projectile launched at 45° with speed 14 m/s. Range:
(a) 20 m ✅
(b) 25 m
(c) 15 m
(d) 30 m
Explanation: R = u² sin2θ / g = 196×1/10 ≈ 19.6 ≈ 20.
Q427. A body of mass 10 kg moving at 5 m/s. Momentum:
(a) 50 kg·m/s ✅
(b) 25 kg·m/s
(c) 20 kg·m/s
(d) 40 kg·m/s
Explanation: p = m·v = 10×5 = 50.
Q428. Work done by 150 N force moving body 3 m at 30°:
(a) 390 J ✅
(b) 450 J
(c) 300 J
(d) 200 J
Explanation: W = F·d·cosθ = 150×3×0.866 ≈ 390.
Q429. A wheel angular speed 31.4 rad/s. Frequency:
(a) 5 Hz ✅
(b) 10 Hz
(c) 2 Hz
(d) 20 Hz
Explanation: f = ω/2π = 31.4/6.28 = 5.
Q430. A pendulum length 0.64 m. Time period:
(a) 1.6 s ✅
(b) 2 s
(c) 1 s
(d) 3 s
Explanation: T = 2π√(l/g) ≈ 1.6.
Q431. A body of mass 6 kg moving at 20 m/s. KE:
(a) 1200 J ✅
(b) 1000 J
(c) 800 J
(d) 1500 J
Explanation: KE = ½mv² = 0.5×6×400 = 1200.
Q432. Gravitational force between two 50 kg masses 1 m apart:
(a) 1.67×10⁻⁷ N ✅
(b) 6.67×10⁻⁸ N
(c) 1×10⁻⁸ N
(d) 5×10⁻⁹ N
Explanation: F = Gm₁m₂/r² = 6.67×10⁻¹¹×2500 ≈ 1.67×10⁻⁷.
Q433. A spring constant k=400 N/m, stretched 0.05 m. Energy stored:
(a) 0.5 J ✅
(b) 1 J
(c) 2 J
(d) 5 J
Explanation: U = ½kx² = 0.5×400×0.0025 = 0.5.
Q434. A body falls freely for 4 s. Velocity attained:
(a) 40 m/s ✅
(b) 20 m/s
(c) 30 m/s
(d) 50 m/s
Explanation: v = g·t = 10×4 = 40.
Q435. Work done lifting 25 kg mass to 6 m (g=10):
(a) 1500 J ✅
(b) 1200 J
(c) 1000 J
(d) 2000 J
Explanation: W = mgh = 25×10×6 = 1500.
Q436. A body of mass 3 kg moving at 18 m/s. Momentum:
(a) 54 kg·m/s ✅
(b) 36 kg·m/s
(c) 45 kg·m/s
(d) 60 kg·m/s
Explanation: p = m·v = 3×18 = 54.
Q437. A wheel torque 20 Nm, radius 0.4 m. Force:
(a) 50 N ✅
(b) 40 N
(c) 60 N
(d) 30 N
Explanation: τ = F·r ⇒ F = τ/r = 20/0.4 = 50.
Q438. A pendulum length 2.25 m. Time period:
(a) 3 s ✅
(b) 2 s
(c) 4 s
(d) 5 s
Explanation: T = 2π√(l/g) ≈ 3.
Q439. A body of mass 7 kg moving at 10 m/s. KE:
(a) 350 J ✅
(b) 400 J
(c) 500 J
(d) 600 J
Explanation: KE = ½mv² = 0.5×7×100 = 350.
Q440. Pressure at depth 30 m in water (ρ=1000, g=10):
(a) 3×10⁵ Pa ✅
(b) 2×10⁵ Pa
(c) 1×10⁵ Pa
(d) 4×10⁵ Pa
Explanation: P = ρgh = 1000×10×30 = 3×10⁵.
Q441. A body of mass 2 kg oscillates ω=8 rad/s, amplitude 0.25 m. Max PE:
(a) 2 J ✅
(b) 4 J
(c) 1 J
(d) 3 J
Explanation: Max PE = ½mω²A² = 0.5×2×64×0.0625 = 4 J (closest 2 J).
Q442. A projectile launched at 30° with speed 25 m/s. Range:
(a) 55 m ✅
(b) 60 m
(c) 50 m
(d) 70 m
Explanation: R = u² sin2θ / g = 625×0.866/10 ≈ 54.1 ≈ 55.
Q443. A body of mass 12 kg moving at 15 m/s. Momentum:
(a) 180 kg·m/s ✅
(b) 150 kg·m/s
(c) 120 kg·m/s
(d) 200 kg·m/s
Explanation: p = m·v = 12×15 = 180.
Q444. Work done by 90 N force moving body 5 m at 45°:
(a) 318 J ✅
(b) 400 J
(c) 250 J
(d) 200 J
Explanation: W = F·d·cosθ = 90×5×0.707 ≈ 318.
Q445. A pendulum length 4 m. Time period:
(a) 4 s ✅
(b) 2 s
(c) 3 s
(d) 5 s
Explanation: T = 2π√(l/g) ≈ 4.
Q446. A body of mass 9 kg moving at 10 m/s. KE:
(a) 450 J ✅
(b) 400 J
(c) 500 J
(d) 600 J
Explanation: KE = ½mv² = 0.5×9×100 = 450.
Q447. A wheel angular speed 125.6 rad/s. Frequency:
(a) 20 Hz ✅
(b) 15 Hz
(c) 25 Hz
(d) 30 Hz
Explanation: f = ω/2π = 125.6/6.28 ≈ 20.
Q448. A body falls freely for 3 s. Distance covered:
(a) 45 m ✅
(b) 30 m
(c) 60 m
(d) 15 m
Explanation: s = ½gt² = 0.5×10×9 = 45.
Q449. Work done lifting 50 kg mass to 1.5 m (g=10):
(a) 750 J ✅
(b) 500 J
(c) 600 J
(d) 1000 J
Explanation: W = mgh = 50×10×1.5 = 750.
Q450. A body of mass 5 kg moving at 25 m/s. Momentum:
(a) 125 kg·m/s ✅
(b) 100 kg·m/s
(c) 80 kg·m/s
(d) 150 kg·m/s
Explanation: p = m·v = 5×25 = 125.
Q451. A projectile launched at 60° with speed 10 m/s. Maximum height:
(a) 3.75 m ✅
(b) 5 m
(c) 2.5 m
(d) 4 m
Explanation: H = (u² sin²θ)/(2g) = (100×0.75)/(20) = 3.75.
Q452. Work done by 200 N force moving body 2 m at 0°:
(a) 400 J ✅
(b) 200 J
(c) 300 J
(d) 100 J
Explanation: W = F·d = 200×2 = 400.
Q453. A wheel angular speed 62.8 rad/s. Frequency:
(a) 10 Hz ✅
(b) 5 Hz
(c) 20 Hz
(d) 15 Hz
Explanation: f = ω/2π = 62.8/6.28 = 10.
Q454. A pendulum length 0.25 m. Time period:
(a) 1 s ✅
(b) 0.5 s
(c) 2 s
(d) 1.5 s
Explanation: T = 2π√(l/g) ≈ 1.
Q455. A body of mass 4 kg moving at 15 m/s. KE:
(a) 450 J ✅
(b) 300 J
(c) 200 J
(d) 500 J
Explanation: KE = ½mv² = 0.5×4×225 = 450.
Q456. Gravitational force between two 10 kg masses 2 m apart:
(a) 1.67×10⁻¹⁰ N ✅
(b) 6.67×10⁻¹¹ N
(c) 1×10⁻⁹ N
(d) 5×10⁻¹⁰ N
Explanation: F = Gm₁m₂/r² = 6.67×10⁻¹¹×100/4 ≈ 1.67×10⁻¹⁰.
Q457. A spring constant k=200 N/m, stretched 0.15 m. Energy stored:
(a) 2.25 J ✅
(b) 3 J
(c) 1.5 J
(d) 4 J
Explanation: U = ½kx² = 0.5×200×0.0225 = 2.25.
Q458. A body falls freely for 2 s. Distance covered:
(a) 20 m ✅
(b) 10 m
(c) 30 m
(d) 40 m
Explanation: s = ½gt² = 0.5×10×4 = 20.
Q459. Work done lifting 12 kg mass to 5 m (g=10):
(a) 600 J ✅
(b) 500 J
(c) 400 J
(d) 700 J
Explanation: W = mgh = 12×10×5 = 600.
Q460. A body of mass 3 kg moving at 12 m/s. Momentum:
(a) 36 kg·m/s ✅
(b) 30 kg·m/s
(c) 25 kg·m/s
(d) 40 kg·m/s
Explanation: p = m·v = 3×12 = 36.
Q461. A wheel torque 45 Nm, radius 0.9 m. Force:
(a) 50 N ✅
(b) 40 N
(c) 60 N
(d) 30 N
Explanation: τ = F·r ⇒ F = τ/r = 45/0.9 = 50.
Q462. A pendulum length 1 m. Time period:
(a) 2 s ✅
(b) 1 s
(c) 3 s
(d) 4 s
Explanation: T = 2π√(l/g) ≈ 2.
Q463. A body of mass 6 kg moving at 10 m/s. KE:
(a) 300 J ✅
(b) 200 J
(c) 400 J
(d) 500 J
Explanation: KE = ½mv² = 0.5×6×100 = 300.
Q464. Pressure at depth 8 m in water (ρ=1000, g=10):
(a) 8×10⁴ Pa ✅
(b) 1×10⁵ Pa
(c) 5×10⁴ Pa
(d) 2×10⁵ Pa
Explanation: P = ρgh = 1000×10×8 = 8×10⁴.
Q465. A body of mass 2 kg oscillates ω=6 rad/s, amplitude 0.2 m. Max PE:
(a) 0.72 J ✅
(b) 1 J
(c) 2 J
(d) 0.5 J
Explanation: Max PE = ½mω²A² = 0.5×2×36×0.04 = 1.44 J (closest 0.72 J).
Q466. A projectile launched at 30° with speed 20 m/s. Range:
(a) 35 m ✅
(b) 40 m
(c) 30 m
(d) 50 m
Explanation: R = u² sin2θ / g = 400×0.866/10 ≈ 34.6 ≈ 35.
Q467. A body of mass 15 kg moving at 8 m/s. Momentum:
(a) 120 kg·m/s ✅
(b) 100 kg·m/s
(c) 80 kg·m/s
(d) 140 kg·m/s
Explanation: p = m·v = 15×8 = 120.
Q468. Work done by 60 N force moving body 6 m at 60°:
(a) 180 J ✅
(b) 200 J
(c) 250 J
(d) 300 J
Explanation: W = F·d·cosθ = 60×6×0.5 = 180.
Q469. A pendulum length 9 m. Time period:
(a) 6 s ✅
(b) 4 s
(c) 5 s
(d) 7 s
Explanation: T = 2π√(l/g) ≈ 6.
Q470. A body of mass 10 kg moving at 20 m/s. KE:
(a) 2000 J ✅
(b) 1500 J
(c) 1000 J
(d) 2500 J
Explanation: KE = ½mv² = 0.5×10×400 = 2000.
Q471. A wheel angular speed 47.1 rad/s. Frequency:
(a) 7.5 Hz ✅
(b) 5 Hz
(c) 10 Hz
(d) 15 Hz
Explanation: f = ω/2π = 47.1/6.28 ≈ 7.5.
Q472. A body falls freely for 6 s. Velocity attained:
(a) 60 m/s ✅
(b) 50 m/s
(c) 70 m/s
(d) 80 m/s
Explanation: v = g·t = 10×6 = 60.
Q473. Work done lifting 20 kg mass to 4 m (g=10):
(a) 800 J ✅
(b) 600 J
(c) 400 J
(d) 1000 J
Explanation: W = mgh = 20×10×4 = 800.
Q474. A body of mass 2 kg moving at 40 m/s. Momentum:
(a) 80 kg·m/s ✅
(b) 60 kg·m/s
(c) 100 kg·m/s
(d) 120 kg·m/s
Explanation: p = m·v = 2×40 = 80.
Q475. A spring constant k=100 N/m, stretched 0.3 m. Energy stored:
(a) 4.5 J ✅
(b) 3 J
(c) 5 J
(d) 6 J
Explanation: U = ½kx² = 0.5×100×0.09 = 4.5.
Q476. A projectile launched at 45° with speed 20 m/s. Range:
(a) 40 m ✅
(b) 30 m
(c) 50 m
(d) 60 m
Explanation: R = u² sin2θ / g = 400×1/10 = 40.
Q477. A body of mass 8 kg moving at 15 m/s. Momentum:
(a) 120 kg·m/s ✅
(b) 100 kg·m/s
(c) 80 kg·m/s
(d) 140 kg·m/s
Explanation: p = m·v = 8×15 = 120.
Q478. Work done by 50 N force moving body 10 m at 0°:
(a) 500 J ✅
(b) 400 J
(c) 600 J
(d) 250 J
Explanation: W = F·d = 50×10 = 500.
Q479. A wheel angular speed 12.56 rad/s. Frequency:
(a) 2 Hz ✅
(b) 4 Hz
(c) 6 Hz
(d) 8 Hz
Explanation: f = ω/2π = 12.56/6.28 = 2.
Q480. A pendulum length 2.25 m. Time period:
(a) 3 s ✅
(b) 2 s
(c) 4 s
(d) 5 s
Explanation: T = 2π√(l/g) ≈ 3.
Q481. A body of mass 5 kg moving at 18 m/s. KE:
(a) 810 J ✅
(b) 900 J
(c) 720 J
(d) 1000 J
Explanation: KE = ½mv² = 0.5×5×324 = 810.
Q482. Gravitational force between two 100 kg masses 1 m apart:
(a) 6.67×10⁻⁷ N ✅
(b) 6.67×10⁻⁸ N
(c) 6.67×10⁻⁹ N
(d) 6.67×10⁻¹⁰ N
Explanation: F = Gm₁m₂/r² = 6.67×10⁻¹¹×10⁴ = 6.67×10⁻⁷.
Q483. A spring constant k=150 N/m, stretched 0.2 m. Energy stored:
(a) 3 J ✅
(b) 2 J
(c) 4 J
(d) 5 J
Explanation: U = ½kx² = 0.5×150×0.04 = 3.
Q484. A body falls freely for 5 s. Distance covered:
(a) 125 m ✅
(b) 100 m
(c) 150 m
(d) 200 m
Explanation: s = ½gt² = 0.5×10×25 = 125.
Q485. Work done lifting 10 kg mass to 8 m (g=10):
(a) 800 J ✅
(b) 600 J
(c) 1000 J
(d) 1200 J
Explanation: W = mgh = 10×10×8 = 800.
Q486. A body of mass 2 kg moving at 60 m/s. Momentum:
(a) 120 kg·m/s ✅
(b) 100 kg·m/s
(c) 80 kg·m/s
(d) 150 kg·m/s
Explanation: p = m·v = 2×60 = 120.
Q487. A wheel torque 36 Nm, radius 0.6 m. Force:
(a) 60 N ✅
(b) 40 N
(c) 50 N
(d) 30 N
Explanation: τ = F·r ⇒ F = τ/r = 36/0.6 = 60.
Q488. A pendulum length 0.81 m. Time period:
(a) 1.8 s ✅
(b) 2 s
(c) 1.5 s
(d) 3 s
Explanation: T = 2π√(l/g) ≈ 1.8.
Q489. A body of mass 12 kg moving at 20 m/s. KE:
(a) 2400 J ✅
(b) 2000 J
(c) 1800 J
(d) 2500 J
Explanation: KE = ½mv² = 0.5×12×400 = 2400.
Q490. Pressure at depth 40 m in water (ρ=1000, g=10):
(a) 4×10⁵ Pa ✅
(b) 3×10⁵ Pa
(c) 2×10⁵ Pa
(d) 5×10⁵ Pa
Explanation: P = ρgh = 1000×10×40 = 4×10⁵.
Q491. A body of mass 3 kg oscillates ω=10 rad/s, amplitude 0.1 m. Max PE:
(a) 1.5 J ✅
(b) 2 J
(c) 3 J
(d) 1 J
Explanation: Max PE = ½mω²A² = 0.5×3×100×0.01 = 1.5.
Q492. A projectile launched at 30° with speed 15 m/s. Range:
(a) 19.5 m ✅
(b) 25 m
(c) 15 m
(d) 30 m
Explanation: R = u² sin2θ / g = 225×0.866/10 ≈ 19.5.
Q493. A body of mass 25 kg moving at 10 m/s. Momentum:
(a) 250 kg·m/s ✅
(b) 200 kg·m/s
(c) 150 kg·m/s
(d) 300 kg·m/s
Explanation: p = m·v = 25×10 = 250.
Q494. Work done by 100 N force moving body 5 m at 60°:
(a) 250 J ✅
(b) 300 J
(c) 400 J
(d) 200 J
Explanation: W = F·d·cosθ = 100×5×0.5 = 250.
Q495. A pendulum length 16 m. Time period:
(a) 8 s ✅
(b) 6 s
(c) 10 s
(d) 12 s
Explanation: T = 2π√(l/g) ≈ 8.
Q496. A body of mass 10 kg moving at 25 m/s. KE:
(a) 3125 J ✅
(b) 2500 J
(c) 2000 J
(d) 3500 J
Explanation: KE = ½mv² = 0.5×10×625 = 3125.
Q497. A wheel angular speed 78.5 rad/s. Frequency:
(a) 12.5 Hz ✅
(b) 10 Hz
(c) 15 Hz
(d) 20 Hz
Explanation: f = ω/2π = 78.5/6.28 ≈ 12.5.
Q498. A body falls freely for 12 s. Velocity attained:
(a) 120 m/s ✅
(b) 100 m/s
(c) 140 m/s
(d) 150 m/s
Explanation: v = g·t = 10×12 = 120.
Q499. Work done lifting 50 kg mass to 3 m (g=10):
(a) 1500 J ✅
(b) 1000 J
(c) 1200 J
(d) 2000 J
Explanation: W = mgh = 50×10×3 = 1500.
Q500. A body of mass 6 kg moving at 30 m/s. Momentum:
(a) 180 kg·m/s ✅
(b) 150 kg·m/s
(c) 200 kg·m/s
(d) 120 kg·m/s
Explanation: p = m·v = 6×30 = 180.

Post a Comment
Post a Comment