Properties of Matters

300 Properties of Matter MCQs with Answers and Explanations | Physics Practice for Global Exams


This comprehensive set of 300 Multiple Choice Questions on Properties of Matter is designed for a global audience of students, educators, and exam aspirants. Covering all major subtopics — Elasticity, Surface Tension, Capillarity, Viscosity, Flow of Liquids, Buoyancy and Archimedes’ Principle, Pressure, Density, and Kinetic Theory — the collection ensures balanced coverage and clarity.

Each question is accompanied by its correct answer and a simple explanation, making the resource ideal for high school physics, competitive exams, Olympiads, and international tests such as SAT, GRE, IB, and GCSE. The structure blends conceptual, numerical, and assertion–reason formats to strengthen understanding and problem-solving skills.

Whether you are revising for class, preparing for global exams, or teaching physics, this MCQ bank provides a complete, reliable, and exam-ready practice set in one place.

Q1. Elasticity is the property of a body to:
(a) Regain its shape after deformation ✅
(b) Remain deformed
(c) Break easily
(d) None
Explanation: Elastic bodies return to original shape when deforming force is removed.

Q2. The law of elasticity was given by:
(a) Hooke ✅
(b) Newton
(c) Einstein
(d) Galileo
Explanation: Hooke’s law states stress ∝ strain within elastic limit.

Q3. Stress is defined as:
(a) Force per unit area ✅
(b) Force per unit length
(c) Force per unit volume
(d) None
Explanation: Stress = F/A.

Q4. Strain is defined as:
(a) Change in dimension / Original dimension ✅
(b) Force per unit area
(c) Work per unit volume
(d) None
Explanation: Strain is ratio, no unit.

Q5. Unit of stress is:
(a) Pascal (N/m²) ✅
(b) Joule
(c) Newton
(d) Watt
Explanation: Stress has same unit as pressure.

Q6. Strain has:
(a) No unit ✅
(b) Unit of Pascal
(c) Unit of Newton
(d) Unit of Joule
Explanation: Strain is ratio, dimensionless.

Q7. Young’s modulus is ratio of:
(a) Stress / Strain ✅
(b) Strain / Stress
(c) Force / Area
(d) None
Explanation: Y = stress / strain.

Q8. Unit of Young’s modulus is:
(a) Pascal ✅
(b) Joule
(c) Newton
(d) Watt
Explanation: Same as stress.

Q9. Bulk modulus relates to:
(a) Volume change ✅
(b) Length change
(c) Shape change
(d) None
Explanation: Bulk modulus = stress / volumetric strain.

Q10. Shear modulus relates to:
(a) Shape change ✅
(b) Volume change
(c) Length change
(d) None
Explanation: Shear modulus = stress / shear strain.

Q11. Poisson’s ratio is ratio of:
(a) Lateral strain / Longitudinal strain ✅
(b) Stress / Strain
(c) Force / Area
(d) None
Explanation: ν = lateral strain / longitudinal strain.

Q12. Poisson’s ratio has:
(a) No unit ✅
(b) Unit of Pascal
(c) Unit of Newton
(d) Unit of Joule
Explanation: Ratio, dimensionless.

Q13. Maximum value of Poisson’s ratio is:
(a) 0.5 ✅
(b) 1
(c) 0
(d) 2
Explanation: ν ≤ 0.5 for stable materials.

Q14. Steel is more elastic than rubber because:
(a) Young’s modulus is higher ✅
(b) Strain is higher
(c) Stress is lower
(d) None
Explanation: Higher modulus means more elasticity.

Q15. Hooke’s law is valid up to:
(a) Elastic limit ✅
(b) Yield point
(c) Breaking point
(d) None
Explanation: Beyond elastic limit, stress ≠ strain.

Q16. Elastic limit is the maximum:
(a) Stress up to which body regains shape ✅
(b) Strain
(c) Force
(d) None
Explanation: Beyond elastic limit, permanent deformation occurs.

Q17. Breaking stress is:
(a) Maximum stress before fracture ✅
(b) Stress at elastic limit
(c) Stress at yield point
(d) None
Explanation: Stress at which material breaks.

Q18. Stress–strain curve is used to study:
(a) Elastic properties ✅
(b) Magnetic properties
(c) Thermal properties
(d) None
Explanation: Curve shows elastic, plastic, fracture regions.

Q19. Toughness of material is measured by:
(a) Area under stress–strain curve ✅
(b) Height of curve
(c) Width of curve
(d) None
Explanation: More area = more toughness.

Q20. Elastic potential energy stored in stretched wire is:
(a) ½ stress × strain × volume ✅
(b) Stress × strain
(c) Force × distance
(d) None
Explanation: Energy density = ½ stress × strain.

Q21. Modulus of rigidity is also called:
(a) Shear modulus ✅
(b) Bulk modulus
(c) Young’s modulus
(d) None
Explanation: Relates shear stress to shear strain.

Q22. Compressibility is reciprocal of:
(a) Bulk modulus ✅
(b) Young’s modulus
(c) Shear modulus
(d) None
Explanation: Compressibility = 1/K.

Q23. For perfectly rigid body, modulus of elasticity is:
(a) Infinite ✅
(b) Zero
(c) One
(d) None
Explanation: No deformation, modulus → ∞.

Q24. For perfectly plastic body, modulus of elasticity is:
(a) Zero ✅
(b) Infinite
(c) One
(d) None
Explanation: No restoring force, modulus = 0.

Q25. Elastic fatigue means:
(a) Loss of elasticity due to repeated loading ✅
(b) Increase in elasticity
(c) Permanent deformation
(d) None
Explanation: Repeated stress reduces elasticity.

Q26. Stress is proportional to strain within:
(a) Elastic limit ✅
(b) Yield point
(c) Breaking point
(d) None
Explanation: Hooke’s law region.

Q27. The slope of stress–strain curve in elastic region gives:
(a) Young’s modulus ✅
(b) Bulk modulus
(c) Shear modulus
(d) None
Explanation: Y = stress/strain.

Q28. A wire of length L and radius r is stretched. Extension depends on:
(a) Length and radius ✅
(b) Only length
(c) Only radius
(d) None
Explanation: ΔL ∝ L/r².

Q29. Greater the Young’s modulus:
(a) More elastic material ✅
(b) Less elastic
(c) More plastic
(d) None
Explanation: Higher modulus = stronger elasticity.

Q30. Elasticity is maximum in:
(a) Steel ✅
(b) Copper
(c) Rubber
(d) Lead
Explanation: Steel has highest Young’s modulus.

Q31. Surface tension is defined as:
(a) Force per unit length ✅
(b) Force per unit area
(c) Energy per unit volume
(d) None
Explanation: Surface tension acts along liquid surface per unit length.

Q32. Unit of surface tension is:
(a) N/m ✅
(b) N/m²
(c) J/kg
(d) None
Explanation: Force per unit length.

Q33. Cause of surface tension is:
(a) Cohesive forces between molecules ✅
(b) Adhesive forces
(c) Gravity
(d) None
Explanation: Molecules at surface experience inward pull.

Q34. Capillary rise occurs due to:
(a) Adhesion > Cohesion ✅
(b) Cohesion > Adhesion
(c) Gravity
(d) None
Explanation: Water wets glass, rises in capillary.

Q35. Capillary depression occurs when:
(a) Cohesion > Adhesion ✅
(b) Adhesion > Cohesion
(c) Gravity
(d) None
Explanation: Mercury does not wet glass, depresses.

Q36. Angle of contact for water with glass is:
(a) Acute (<90°) ✅
(b) Obtuse (>90°)
(c) 90°
(d) None
Explanation: Water wets glass.

Q37. Angle of contact for mercury with glass is:
(a) Obtuse (>90°) ✅
(b) Acute
(c) 90°
(d) None
Explanation: Mercury does not wet glass.

Q38. Capillary rise formula is:
(a) h = 2T cosθ / (ρgr) ✅
(b) h = T/ρg
(c) h = ρgr/T
(d) None
Explanation: Derived from balance of forces.

Q39. Capillary rise is inversely proportional to:
(a) Radius of tube ✅
(b) Density
(c) Surface tension
(d) None
Explanation: Smaller radius → higher rise.

Q40. Detergents reduce surface tension because:
(a) They weaken cohesive forces ✅
(b) Strengthen cohesive forces
(c) Increase adhesion
(d) None
Explanation: Easier cleaning.

Q41. Viscosity is property of fluid to:
(a) Resist relative motion ✅
(b) Flow easily
(c) Remain still
(d) None
Explanation: Internal friction between layers.

Q42. Unit of viscosity is:
(a) N·s/m² ✅
(b) N/m
(c) J/kg
(d) None
Explanation: SI unit = Pascal second.

Q43. Viscosity of liquids decreases with:
(a) Increase in temperature ✅
(b) Decrease in temperature
(c) Pressure
(d) None
Explanation: Molecules move freely at higher temperature.

Q44. Viscosity of gases increases with:
(a) Increase in temperature ✅
(b) Decrease in temperature
(c) Pressure
(d) None
Explanation: More collisions at higher temperature.

Q45. Stokes’ law gives force on sphere moving in fluid:
(a) F = 6πrηv ✅
(b) F = ηrv
(c) F = 2πrηv
(d) None
Explanation: Drag force formula.

Q46. Terminal velocity is attained when:
(a) Net force = 0 ✅
(b) Net force > 0
(c) Net force < 0
(d) None
Explanation: Weight = buoyant force + viscous force.

Q47. Terminal velocity formula is:
(a) v = 2r²(ρ – σ)g / 9η ✅
(b) v = r²g/η
(c) v = η/ρg
(d) None
Explanation: Derived using Stokes’ law.

Q48. Viscosity is due to:
(a) Internal friction between layers ✅
(b) External force
(c) Gravity
(d) None
Explanation: Molecules resist sliding.

Q49. Water has viscosity about:
(a) 10⁻³ N·s/m² ✅
(b) 1 N·s/m²
(c) 10 N·s/m²
(d) None
Explanation: Standard value at room temperature.

Q50. Oil has viscosity compared to water:
(a) Higher ✅
(b) Lower
(c) Same
(d) None
Explanation: Oil flows slower.

Q51. Honey has viscosity compared to water:
(a) Much higher ✅
(b) Lower
(c) Same
(d) None
Explanation: Honey flows very slowly.

Q52. Blood viscosity is:
(a) Higher than water ✅
(b) Lower than water
(c) Same
(d) None
Explanation: Blood is thicker.

Q53. Surface tension decreases with:
(a) Increase in temperature ✅
(b) Decrease in temperature
(c) Pressure
(d) None
Explanation: Molecules move freely at higher temperature.

Q54. Capillary rise is independent of:
(a) Length of tube ✅
(b) Radius
(c) Surface tension
(d) Density
Explanation: Only radius matters, not length.

Q55. Viscosity coefficient is symbol:
(a) η ✅
(b) μ
(c) λ
(d) None
Explanation: Standard symbol.

Q56. Surface tension coefficient is symbol:
(a) T ✅
(b) η
(c) μ
(d) None
Explanation: Standard symbol.

Q57. Capillary rise is more in:
(a) Thin tube ✅
(b) Thick tube
(c) Same
(d) None
Explanation: Smaller radius → higher rise.

Q58. Capillary rise is less in:
(a) Thick tube ✅
(b) Thin tube
(c) Same
(d) None
Explanation: Larger radius → smaller rise.

Q59. Viscosity of ideal fluid is:
(a) Zero ✅
(b) Infinite
(c) One
(d) None
Explanation: Ideal fluid has no resistance.

Q60. Surface tension of soap solution is:
(a) Less than pure water ✅
(b) More than pure water
(c) Same
(d) None
Explanation: Soap reduces surface tension.

Q61. Capillary rise is used in:
(a) Ink pens ✅
(b) Fans
(c) Motors
(d) None
Explanation: Ink rises in nib.

Q62. Viscosity is useful in:
(a) Lubrication ✅
(b) Magnetism
(c) Electricity
(d) None
Explanation: Oil reduces friction.

Q63. Surface tension is useful in:
(a) Formation of droplets ✅
(b) Electricity
(c) Magnetism
(d) None
Explanation: Water forms spherical drops.

Q64. Capillary action is useful in:
(a) Plants absorbing water ✅
(b) Electricity
(c) Magnetism
(d) None
Explanation: Roots absorb water via capillarity.

Q65. Viscosity is measured by:
(a) Viscometer ✅
(b) Hydrometer
(c) Manometer
(d) None
Explanation: Instrument for viscosity.

Q66. Density is measured by:
(a) Hydrometer ✅
(b) Viscometer
(c) Manometer
(d) None
Explanation: Hydrometer measures relative density.

Q67. Pressure is measured by:
(a) Manometer ✅
(b) Hydrometer
(c) Viscometer
(d) None
Explanation: Manometer measures pressure.

Q68. Surface tension is measured by:
(a) Capillary rise method ✅
(b) Manometer
(c) Hydrometer
(d) None
Explanation: Rise in capillary tube.

Q69. Viscosity is important in:
(a) Blood flow ✅
(b) Magnetism
(c) Electricity
(d) None
Explanation: Determines ease of blood circulation.

Q70. Surface tension is important in:
(a) Cleaning with detergents ✅
(b) Magnetism
(c) Electricity
(d) None
Explanation: Detergents reduce surface tension for cleaning.

Q71. Equation of continuity states:
(a) A₁v₁ = A₂v₂ ✅
(b) A₁v₁ = A₂/v₂
(c) A₁/v₁ = A₂v₂
(d) None
Explanation: Flow rate is constant, area × velocity = constant.

Q72. Bernoulli’s theorem is based on:
(a) Conservation of energy ✅
(b) Conservation of mass
(c) Conservation of momentum
(d) None
Explanation: Total energy per unit volume is constant.

Q73. Bernoulli’s equation is valid for:
(a) Ideal fluid ✅
(b) Real fluid
(c) Viscous fluid
(d) None
Explanation: Assumes no viscosity, incompressible fluid.

Q74. Bernoulli’s equation is:
(a) P + ½ρv² + ρgh = constant ✅
(b) P + ρv² + ρgh = constant
(c) P + ρgh = constant
(d) None
Explanation: Pressure + kinetic + potential energy per unit volume.

Q75. Velocity of efflux is given by:
(a) v = √(2gh) ✅
(b) v = gh
(c) v = 2gh
(d) None
Explanation: Derived from Bernoulli’s theorem.

Q76. Torricelli’s theorem gives:
(a) Velocity of efflux ✅
(b) Pressure
(c) Density
(d) None
Explanation: v = √(2gh).

Q77. Streamline flow means:
(a) Velocity at a point is constant ✅
(b) Velocity changes randomly
(c) Flow is turbulent
(d) None
Explanation: Fluid particles follow smooth paths.

Q78. Turbulent flow means:
(a) Irregular motion of fluid ✅
(b) Smooth motion
(c) Constant velocity
(d) None
Explanation: Random eddies and swirls.

Q79. Reynolds number determines:
(a) Type of flow ✅
(b) Pressure
(c) Density
(d) None
Explanation: Re < 2000 → streamline, Re > 3000 → turbulent.

Q80. Reynolds number formula is:
(a) Re = ρvd/η ✅
(b) Re = ηvd/ρ
(c) Re = ρv/η
(d) None
Explanation: Dimensionless number.

Q81. Critical velocity is velocity at which:
(a) Flow changes from streamline to turbulent ✅
(b) Flow stops
(c) Flow increases
(d) None
Explanation: Depends on fluid and tube.

Q82. Equation of continuity shows:
(a) Mass conservation ✅
(b) Energy conservation
(c) Momentum conservation
(d) None
Explanation: Flow rate constant.

Q83. Bernoulli’s theorem explains:
(a) Lift of airplane ✅
(b) Weight of body
(c) Pressure in solids
(d) None
Explanation: Faster air → lower pressure → lift.

Q84. Application of Bernoulli’s theorem:
(a) Atomizer ✅
(b) Magnet
(c) Battery
(d) None
Explanation: Spray bottles work on pressure difference.

Q85. Hydraulic lift works on:
(a) Pascal’s law ✅
(b) Bernoulli’s theorem
(c) Newton’s law
(d) None
Explanation: Pressure transmitted equally.

Q86. Velocity of efflux depends on:
(a) Height of liquid column ✅
(b) Density
(c) Area
(d) None
Explanation: v = √(2gh).

Q87. Streamline flow occurs when:
(a) Re < 2000 ✅
(b) Re > 3000
(c) Re = 2000
(d) None
Explanation: Critical Reynolds number.

Q88. Turbulent flow occurs when:
(a) Re > 3000 ✅
(b) Re < 2000
(c) Re = 2000
(d) None
Explanation: Random motion.

Q89. Continuity equation is valid for:
(a) Incompressible fluid ✅
(b) Compressible fluid
(c) Viscous fluid
(d) None
Explanation: Assumes density constant.

Q90. Bernoulli’s theorem neglects:
(a) Viscosity ✅
(b) Pressure
(c) Density
(d) None
Explanation: Ideal fluid assumption.

Q91. Lift of airplane wing is due to:
(a) Pressure difference ✅
(b) Gravity
(c) Density
(d) None
Explanation: Faster air above wing → lower pressure.

Q92. Atomizer works on:
(a) Pressure difference ✅
(b) Gravity
(c) Density
(d) None
Explanation: Liquid rises due to low pressure.

Q93. Velocity of efflux is similar to:
(a) Free fall velocity ✅
(b) Projectile velocity
(c) Escape velocity
(d) None
Explanation: v = √(2gh).

Q94. Hydraulic brakes work on:
(a) Pascal’s law ✅
(b) Bernoulli’s theorem
(c) Newton’s law
(d) None
Explanation: Pressure transmitted equally.

Q95. Continuity equation shows:
(a) A₁v₁ = A₂v₂ ✅
(b) A₁v₁ = A₂/v₂
(c) A₁/v₁ = A₂v₂
(d) None
Explanation: Flow rate constant.

Q96. Bernoulli’s theorem is not valid for:
(a) Viscous fluids ✅
(b) Ideal fluids
(c) Incompressible fluids
(d) None
Explanation: Assumes no viscosity.

Q97. Application of Bernoulli’s theorem:
(a) Venturi meter ✅
(b) Hydrometer
(c) Manometer
(d) None
Explanation: Measures flow speed.

Q98. Venturi meter measures:
(a) Flow speed ✅
(b) Pressure
(c) Density
(d) None
Explanation: Based on pressure difference.

Q99. Pitot tube measures:
(a) Velocity of fluid ✅
(b) Pressure
(c) Density
(d) None
Explanation: Uses stagnation pressure.

Q100. Bernoulli’s theorem explains:
(a) Sailing of boats ✅
(b) Magnetism
(c) Electricity
(d) None
Explanation: Pressure difference helps motion.

Q101. Continuity equation is derived from:
(a) Mass conservation ✅
(b) Energy conservation
(c) Momentum conservation
(d) None
Explanation: Flow rate constant.

Q102. Bernoulli’s theorem is derived from:
(a) Energy conservation ✅
(b) Mass conservation
(c) Momentum conservation
(d) None
Explanation: Total energy constant.

Q103. Hydraulic press works on:
(a) Pascal’s law ✅
(b) Bernoulli’s theorem
(c) Newton’s law
(d) None
Explanation: Pressure transmitted equally.

Q104. Velocity of efflux is independent of:
(a) Area of hole ✅
(b) Height
(c) Density
(d) None
Explanation: v = √(2gh).

Q105. Streamline flow is also called:
(a) Laminar flow ✅
(b) Turbulent flow
(c) Random flow
(d) None
Explanation: Smooth paths.

Q106. Turbulent flow is also called:
(a) Irregular flow ✅
(b) Laminar flow
(c) Smooth flow
(d) None
Explanation: Random motion.

Q107. Reynolds number is dimensionless because:
(a) Units cancel out ✅
(b) Has units
(c) Depends on density
(d) None
Explanation: Ratio of forces.

Q108. Bernoulli’s theorem explains:
(a) Curve of cricket ball ✅
(b) Magnetism
(c) Electricity
(d) None
Explanation: Pressure difference causes swing.

Q109. Continuity equation is useful in:
(a) Pipe flow ✅
(b) Magnetism
(c) Electricity
(d) None
Explanation: Flow rate constant.

Q110. Bernoulli’s theorem is useful in:
(a) Designing aircraft ✅
(b) Designing magnets
(c) Designing batteries
(d) None
Explanation: Explains lift.

Q111. Buoyancy is the upward force exerted by:
(a) Fluid on immersed body ✅
(b) Solid on fluid
(c) Gas on solid
(d) None
Explanation: Fluids push upward on objects placed in them.

Q112. Archimedes’ principle states:
(a) Loss of weight = weight of displaced fluid ✅
(b) Loss of weight = volume of body
(c) Loss of weight = density of body
(d) None
Explanation: Buoyant force equals weight of displaced fluid.

Q113. Buoyant force depends on:
(a) Volume of displaced fluid ✅
(b) Mass of body
(c) Shape of body
(d) None
Explanation: Larger volume displaced → greater buoyancy.

Q114. A body floats when:
(a) Weight = Buoyant force ✅
(b) Weight > Buoyant force
(c) Weight < Buoyant force
(d) None
Explanation: Equilibrium condition.

Q115. A body sinks when:
(a) Weight > Buoyant force ✅
(b) Weight = Buoyant force
(c) Weight < Buoyant force
(d) None
Explanation: Net downward force.

Q116. A body rises when:
(a) Weight < Buoyant force ✅
(b) Weight = Buoyant force
(c) Weight > Buoyant force
(d) None
Explanation: Net upward force.

Q117. Density of floating body is:
(a) Less than fluid ✅
(b) Greater than fluid
(c) Equal to fluid
(d) None
Explanation: Float only if density < fluid.

Q118. Density of sinking body is:
(a) Greater than fluid ✅
(b) Less than fluid
(c) Equal to fluid
(d) None
Explanation: Sink if density > fluid.

Q119. Hydrometer works on:
(a) Archimedes’ principle ✅
(b) Bernoulli’s theorem
(c) Pascal’s law
(d) None
Explanation: Floats at different levels depending on density.

Q120. Ship floats because:
(a) Average density < water ✅
(b) Density > water
(c) Weight < buoyant force
(d) None
Explanation: Hollow design reduces average density.

Q121. Balloon rises because:
(a) Density < air ✅
(b) Density > air
(c) Weight > buoyant force
(d) None
Explanation: Buoyant force > weight.

Q122. Buoyant force acts through:
(a) Centre of buoyancy ✅
(b) Centre of gravity
(c) Centre of mass
(d) None
Explanation: Point of action of buoyant force.

Q123. Centre of buoyancy is:
(a) Centre of displaced fluid volume ✅
(b) Centre of gravity
(c) Centre of mass
(d) None
Explanation: Geometric centre of displaced fluid.

Q124. Submarine sinks by:
(a) Filling ballast tanks ✅
(b) Emptying ballast tanks
(c) Increasing speed
(d) None
Explanation: Increases density.

Q125. Submarine rises by:
(a) Emptying ballast tanks ✅
(b) Filling ballast tanks
(c) Increasing speed
(d) None
Explanation: Decreases density.

Q126. Apparent weight of body in fluid is:
(a) Actual weight – Buoyant force ✅
(b) Actual weight + Buoyant force
(c) Actual weight × Buoyant force
(d) None
Explanation: Buoyancy reduces effective weight.

Q127. Buoyant force is independent of:
(a) Depth of immersion ✅
(b) Volume displaced
(c) Density of fluid
(d) None
Explanation: Depends only on displaced fluid.

Q128. Buoyant force increases with:
(a) Density of fluid ✅
(b) Mass of body
(c) Shape of body
(d) None
Explanation: Denser fluid → stronger buoyancy.

Q129. Apparent loss of weight is equal to:
(a) Buoyant force ✅
(b) Actual weight
(c) Density
(d) None
Explanation: Archimedes’ principle.

Q130. Floating condition is:
(a) Density of body < density of fluid ✅
(b) Density of body > density of fluid
(c) Density equal
(d) None
Explanation: Float only if lighter.

Q131. Sinking condition is:
(a) Density of body > density of fluid ✅
(b) Density of body < density of fluid
(c) Density equal
(d) None
Explanation: Sink if heavier.

Q132. Neutral floating occurs when:
(a) Density of body = density of fluid ✅
(b) Density of body > density of fluid
(c) Density of body < density of fluid
(d) None
Explanation: Body remains suspended.

Q133. Apparent weightlessness in water is due to:
(a) Buoyant force ✅
(b) Gravity
(c) Pressure
(d) None
Explanation: Buoyancy reduces effective weight.

Q134. Buoyant force acts in direction:
(a) Upward ✅
(b) Downward
(c) Horizontal
(d) None
Explanation: Opposite to gravity.

Q135. Apparent density of body in fluid is:
(a) Actual density – fluid density ✅
(b) Actual density + fluid density
(c) Actual density × fluid density
(d) None
Explanation: Effective density reduced.

Q136. Floating of ice on water shows:
(a) Density of ice < water ✅
(b) Density of ice > water
(c) Density equal
(d) None
Explanation: Ice floats because lighter.

Q137. Floating of wood on water shows:
(a) Density of wood < water ✅
(b) Density of wood > water
(c) Density equal
(d) None
Explanation: Wood lighter than water.

Q138. Apparent loss of weight is measured by:
(a) Spring balance ✅
(b) Hydrometer
(c) Manometer
(d) None
Explanation: Shows reduced reading.

Q139. Buoyant force depends on:
(a) Volume displaced and fluid density ✅
(b) Mass of body
(c) Shape of body
(d) None
Explanation: F = ρVg.

Q140. Apparent weight in fluid is less because:
(a) Buoyant force acts upward ✅
(b) Gravity reduces
(c) Pressure reduces
(d) None
Explanation: Buoyancy opposes gravity.

Q141. Floating of ship is explained by:
(a) Archimedes’ principle ✅
(b) Bernoulli’s theorem
(c) Pascal’s law
(d) None
Explanation: Average density less than water.

Q142. Floating of balloon is explained by:
(a) Archimedes’ principle ✅
(b) Bernoulli’s theorem
(c) Pascal’s law
(d) None
Explanation: Buoyant force > weight.

Q143. Apparent loss of weight in fluid is equal to:
(a) Weight of displaced fluid ✅
(b) Weight of body
(c) Density of body
(d) None
Explanation: Archimedes’ principle.

Q144. Buoyant force is measured in:
(a) Newton ✅
(b) Pascal
(c) Joule
(d) None
Explanation: Force unit.

Q145. Apparent weightlessness in swimming pool is due to:
(a) Buoyant force ✅
(b) Gravity
(c) Pressure
(d) None
Explanation: Buoyancy reduces effective weight.

Q146. Apparent loss of weight increases with:
(a) Density of fluid ✅
(b) Mass of body
(c) Shape of body
(d) None
Explanation: Denser fluid → more buoyancy.

Q147. Apparent loss of weight decreases with:
(a) Less dense fluid ✅
(b) More dense fluid
(c) Mass of body
(d) None
Explanation: Lighter fluid → less buoyancy.

Q148. Apparent loss of weight is zero in:
(a) Vacuum ✅
(b) Water
(c) Air
(d) None
Explanation: No fluid → no buoyancy.

Q149. Apparent loss of weight is maximum in:
(a) Mercury ✅
(b) Water
(c) Air
(d) None
Explanation: Mercury has highest density.

Q150. Buoyant force is useful in:
(a) Designing ships and submarines ✅
(b) Designing magnets
(c) Designing batteries
(d) None
Explanation: Archimedes’ principle applied.

Q151. Pressure is defined as:
(a) Force per unit area ✅
(b) Force per unit length
(c) Force per unit volume
(d) None
Explanation: P = F/A.

Q152. Unit of pressure is:
(a) Pascal (N/m²) ✅
(b) Newton
(c) Joule
(d) Watt
Explanation: SI unit is Pascal.

Q153. Atmospheric pressure at sea level is:
(a) 1.013 × 10⁵ Pa ✅
(b) 1 Pa
(c) 10⁵ N
(d) None
Explanation: Standard atmospheric pressure.

Q154. Instrument to measure pressure is:
(a) Manometer ✅
(b) Hydrometer
(c) Viscometer
(d) None
Explanation: Manometer measures pressure.

Q155. Barometer measures:
(a) Atmospheric pressure ✅
(b) Density
(c) Viscosity
(d) None
Explanation: Mercury barometer.

Q156. Pascal’s law states:
(a) Pressure applied is transmitted equally ✅
(b) Pressure decreases
(c) Pressure increases
(d) None
Explanation: Basis of hydraulic machines.

Q157. Hydraulic lift works on:
(a) Pascal’s law ✅
(b) Bernoulli’s theorem
(c) Archimedes’ principle
(d) None
Explanation: Pressure transmitted equally.

Q158. Hydraulic brakes work on:
(a) Pascal’s law ✅
(b) Bernoulli’s theorem
(c) Archimedes’ principle
(d) None
Explanation: Pressure transmitted equally.

Q159. Pressure in liquids increases with:
(a) Depth ✅
(b) Area
(c) Volume
(d) None
Explanation: P = ρgh.

Q160. Pressure at depth h is:
(a) P = ρgh ✅
(b) P = gh
(c) P = ρg/h
(d) None
Explanation: Derived from hydrostatics.

Q161. Pressure is scalar because:
(a) It has magnitude only ✅
(b) It has direction
(c) It has both
(d) None
Explanation: No direction.

Q162. Pressure in fluids acts:
(a) In all directions ✅
(b) Only upward
(c) Only downward
(d) None
Explanation: Equal transmission.

Q163. Pressure at same depth is:
(a) Same in all directions ✅
(b) Different
(c) Zero
(d) None
Explanation: Hydrostatic principle.

Q164. Pressure depends on:
(a) Depth and density ✅
(b) Shape of container
(c) Area
(d) None
Explanation: P = ρgh.

Q165. Pressure is independent of:
(a) Shape of container ✅
(b) Depth
(c) Density
(d) None
Explanation: Hydrostatic paradox.

Q166. Hydraulic press works on:
(a) Pascal’s law ✅
(b) Bernoulli’s theorem
(c) Archimedes’ principle
(d) None
Explanation: Pressure transmitted equally.

Q167. Pressure in gases is due to:
(a) Molecular collisions ✅
(b) Gravity
(c) Cohesion
(d) None
Explanation: Molecules strike walls.

Q168. Pressure decreases with:
(a) Altitude ✅
(b) Depth
(c) Density
(d) None
Explanation: Less air above.

Q169. Pressure increases with:
(a) Depth ✅
(b) Altitude
(c) Shape
(d) None
Explanation: More fluid above.

Q170. Pressure in fluid is measured by:
(a) Manometer ✅
(b) Hydrometer
(c) Viscometer
(d) None
Explanation: Manometer.

Q171. Pressure in atmosphere is measured by:
(a) Barometer ✅
(b) Hydrometer
(c) Viscometer
(d) None
Explanation: Mercury barometer.

Q172. Pressure is transmitted equally in:
(a) All directions ✅
(b) One direction
(c) Two directions
(d) None
Explanation: Pascal’s law.

Q173. Hydraulic machines work on:
(a) Pascal’s law ✅
(b) Bernoulli’s theorem
(c) Archimedes’ principle
(d) None
Explanation: Equal transmission.

Q174. Pressure in liquid depends on:
(a) Depth and density ✅
(b) Shape
(c) Area
(d) None
Explanation: Hydrostatics.

Q175. Pressure at bottom of container depends on:
(a) Height of liquid column ✅
(b) Shape of container
(c) Area
(d) None
Explanation: Hydrostatic paradox.

Q176. Pressure in fluid is proportional to:
(a) Depth ✅
(b) Area
(c) Shape
(d) None
Explanation: P = ρgh.

Q177. Pressure in fluid is proportional to:
(a) Density ✅
(b) Area
(c) Shape
(d) None
Explanation: P = ρgh.

Q178. Pressure in fluid is proportional to:
(a) g ✅
(b) Area
(c) Shape
(d) None
Explanation: P = ρgh.

Q179. Pressure in fluid is independent of:
(a) Shape of container ✅
(b) Depth
(c) Density
(d) None
Explanation: Hydrostatic paradox.

Q180. Pressure in fluid is measured in:
(a) Pascal ✅
(b) Newton
(c) Joule
(d) None
Explanation: SI unit.

Q181. Pressure in atmosphere decreases with:
(a) Altitude ✅
(b) Depth
(c) Density
(d) None
Explanation: Less air above.

Q182. Pressure in liquid increases with:
(a) Depth ✅
(b) Altitude
(c) Shape
(d) None
Explanation: Hydrostatics.

Q183. Pressure in liquid is same at:
(a) Same depth ✅
(b) Different depth
(c) Surface
(d) None
Explanation: Hydrostatics.

Q184. Pressure in fluid acts:
(a) Perpendicular to surface ✅
(b) Parallel
(c) Tangential
(d) None
Explanation: Normal force.

Q185. Pressure in fluid is due to:
(a) Weight of fluid ✅
(b) Shape
(c) Area
(d) None
Explanation: Hydrostatics.

Q186. Pressure in atmosphere is due to:
(a) Weight of air ✅
(b) Shape
(c) Area
(d) None
Explanation: Atmosphere exerts weight.

Q187. Pressure in liquid is greater at:
(a) Greater depth ✅
(b) Lesser depth
(c) Surface
(d) None
Explanation: P = ρgh.

Q188. Pressure in liquid is less at:
(a) Lesser depth ✅
(b) Greater depth
(c) Surface
(d) None
Explanation: Hydrostatics.

Q189. Pressure in fluid is transmitted:
(a) Equally in all directions ✅
(b) Only upward
(c) Only downward
(d) None
Explanation: Pascal’s law.

Q190. Pressure in fluid is useful in:
(a) Hydraulic machines ✅
(b) Magnetism
(c) Electricity
(d) None
Explanation: Pascal’s law applications.

Q191. Density is defined as:
(a) Mass per unit volume ✅
(b) Mass per unit area
(c) Mass per unit length
(d) None
Explanation: ρ = m/V.

Q192. Unit of density is:
(a) kg/m³ ✅
(b) N/m²
(c) J/kg
(d) None
Explanation: SI unit is kilogram per cubic metre.

Q193. Relative density is ratio of:
(a) Density of substance / Density of water ✅
(b) Density of water / Density of substance
(c) Mass / Volume
(d) None
Explanation: Water taken as reference.

Q194. Relative density has:
(a) No unit ✅
(b) Unit of kg/m³
(c) Unit of Pascal
(d) None
Explanation: Ratio, dimensionless.

Q195. Density of water at 4°C is:
(a) 1000 kg/m³ ✅
(b) 1 kg/m³
(c) 10 kg/m³
(d) None
Explanation: Maximum density at 4°C.

Q196. Density of ice is:
(a) Less than water ✅
(b) Greater than water
(c) Equal to water
(d) None
Explanation: Ice floats on water.

Q197. Density of mercury is about:
(a) 13,600 kg/m³ ✅
(b) 1000 kg/m³
(c) 5000 kg/m³
(d) None
Explanation: Very dense liquid.

Q198. Density of air at STP is:
(a) 1.29 kg/m³ ✅
(b) 1000 kg/m³
(c) 10 kg/m³
(d) None
Explanation: Standard value.

Q199. Relative density is measured by:
(a) Hydrometer ✅
(b) Manometer
(c) Viscometer
(d) None
Explanation: Floats at different levels.

Q200. Density of gold is about:
(a) 19,300 kg/m³ ✅
(b) 10,000 kg/m³
(c) 5000 kg/m³
(d) None
Explanation: Very heavy metal.

Q201. Density of aluminium is about:
(a) 2700 kg/m³ ✅
(b) 5000 kg/m³
(c) 1000 kg/m³
(d) None
Explanation: Light metal.

Q202. Density of iron is about:
(a) 7800 kg/m³ ✅
(b) 2700 kg/m³
(c) 1000 kg/m³
(d) None
Explanation: Standard value.

Q203. Density of copper is about:
(a) 8900 kg/m³ ✅
(b) 2700 kg/m³
(c) 1000 kg/m³
(d) None
Explanation: Standard value.

Q204. Density of silver is about:
(a) 10,500 kg/m³ ✅
(b) 2700 kg/m³
(c) 1000 kg/m³
(d) None
Explanation: Standard value.

Q205. Density of lead is about:
(a) 11,300 kg/m³ ✅
(b) 2700 kg/m³
(c) 1000 kg/m³
(d) None
Explanation: Standard value.

Q206. Density of platinum is about:
(a) 21,400 kg/m³ ✅
(b) 19,300 kg/m³
(c) 10,000 kg/m³
(d) None
Explanation: Heaviest common metal.

Q207. Density of hydrogen gas is:
(a) 0.09 kg/m³ ✅
(b) 1.29 kg/m³
(c) 1000 kg/m³
(d) None
Explanation: Very light gas.

Q208. Density of oxygen gas is:
(a) 1.43 kg/m³ ✅
(b) 1.29 kg/m³
(c) 1000 kg/m³
(d) None
Explanation: Standard value.

Q209. Density of carbon dioxide gas is:
(a) 1.98 kg/m³ ✅
(b) 1.29 kg/m³
(c) 1000 kg/m³
(d) None
Explanation: Heavier than air.

Q210. Density of helium gas is:
(a) 0.18 kg/m³ ✅
(b) 1.29 kg/m³
(c) 1000 kg/m³
(d) None
Explanation: Light gas.

Q211. Density of ethanol is about:
(a) 789 kg/m³ ✅
(b) 1000 kg/m³
(c) 500 kg/m³
(d) None
Explanation: Less than water.

Q212. Density of oil is:
(a) Less than water ✅
(b) Greater than water
(c) Equal to water
(d) None
Explanation: Oil floats on water.

Q213. Density of sea water is:
(a) Greater than pure water ✅
(b) Less than pure water
(c) Equal
(d) None
Explanation: Due to dissolved salts.

Q214. Density of milk is:
(a) Slightly greater than water ✅
(b) Less than water
(c) Equal
(d) None
Explanation: Due to dissolved solids.

Q215. Density of gases depends on:
(a) Pressure and temperature ✅
(b) Shape
(c) Area
(d) None
Explanation: PV = nRT relation.

Q216. Density of liquids depends on:
(a) Temperature ✅
(b) Pressure
(c) Shape
(d) None
Explanation: Expansion changes density.

Q217. Density of solids depends on:
(a) Material ✅
(b) Shape
(c) Area
(d) None
Explanation: Fixed property.

Q218. Relative density is useful in:
(a) Identifying substances ✅
(b) Measuring pressure
(c) Measuring viscosity
(d) None
Explanation: Each material has unique density.

Q219. Density is important in:
(a) Floating and sinking ✅
(b) Magnetism
(c) Electricity
(d) None
Explanation: Determines buoyancy.

Q220. Density is measured in:
(a) kg/m³ ✅
(b) Pascal
(c) Joule
(d) None
Explanation: SI unit.

Q221. Kinetic theory of gases assumes:
(a) Molecules are in random motion ✅
(b) Molecules are at rest
(c) Molecules are fixed
(d) None
Explanation: Gas molecules move randomly.

Q222. Pressure of gas is due to:
(a) Molecular collisions with walls ✅
(b) Gravity
(c) Cohesion
(d) None
Explanation: Molecules strike container walls.

Q223. Average kinetic energy of gas molecules is proportional to:
(a) Absolute temperature ✅
(b) Pressure
(c) Volume
(d) None
Explanation: KE ∝ T.

Q224. Equation of state of ideal gas is:
(a) PV = nRT ✅
(b) PV = RT
(c) PV = T
(d) None
Explanation: Ideal gas law.

Q225. Boltzmann constant relates:
(a) Energy per molecule to temperature ✅
(b) Pressure to volume
(c) Mass to volume
(d) None
Explanation: k = R/NA.

Q226. Mean free path is:
(a) Average distance travelled between collisions ✅
(b) Average velocity
(c) Average displacement
(d) None
Explanation: Distance between successive collisions.

Q227. Degrees of freedom are:
(a) Independent ways of motion ✅
(b) Dependent ways
(c) Fixed ways
(d) None
Explanation: Translational, rotational, vibrational.

Q228. For monoatomic gas, degrees of freedom are:
(a) 3 ✅
(b) 5
(c) 6
(d) None
Explanation: Only translational.

Q229. For diatomic gas, degrees of freedom are:
(a) 5 ✅
(b) 3
(c) 6
(d) None
Explanation: 3 translational + 2 rotational.

Q230. For triatomic gas, degrees of freedom are:
(a) 6 ✅
(b) 5
(c) 3
(d) None
Explanation: Translational + rotational + vibrational.

Q231. Law of equipartition of energy states:
(a) Each degree of freedom has ½kT energy ✅
(b) Each has kT
(c) Each has T
(d) None
Explanation: Energy equally distributed.

Q232. Specific heat at constant volume (Cv) is:
(a) (f/2)R ✅
(b) fR
(c) R
(d) None
Explanation: f = degrees of freedom.

Q233. Specific heat at constant pressure (Cp) is:
(a) Cv + R ✅
(b) Cv – R
(c) Cv × R
(d) None
Explanation: Cp – Cv = R.

Q234. Ratio of specific heats (γ) is:
(a) Cp/Cv ✅
(b) Cv/Cp
(c) Cp – Cv
(d) None
Explanation: γ = Cp/Cv.

Q235. For monoatomic gas, γ is:
(a) 5/3 ✅
(b) 7/5
(c) 1
(d) None
Explanation: Cp = 5/2R, Cv = 3/2R.

Q236. For diatomic gas, γ is:
(a) 7/5 ✅
(b) 5/3
(c) 1
(d) None
Explanation: Cp = 7/2R, Cv = 5/2R.

Q237. Root mean square velocity formula is:
(a) √(3RT/M) ✅
(b) √(RT/M)
(c) √(2RT/M)
(d) None
Explanation: Derived from kinetic theory.

Q238. Average velocity formula is:
(a) √(8RT/πM) ✅
(b) √(3RT/M)
(c) √(2RT/M)
(d) None
Explanation: Maxwell distribution.

Q239. Most probable velocity formula is:
(a) √(2RT/M) ✅
(b) √(3RT/M)
(c) √(8RT/πM)
(d) None
Explanation: Maxwell distribution.

Q240. Maxwell distribution explains:
(a) Distribution of molecular speeds ✅
(b) Distribution of pressure
(c) Distribution of volume
(d) None
Explanation: Probability curve.

Q241. Pressure of ideal gas is:
(a) ⅓ρc² ✅
(b) ρc²
(c) ½ρc²
(d) None
Explanation: Derived from kinetic theory.

Q242. Internal energy of ideal gas depends on:
(a) Temperature only ✅
(b) Pressure
(c) Volume
(d) None
Explanation: U ∝ T.

Q243. Internal energy of monoatomic gas is:
(a) 3/2 nRT ✅
(b) 5/2 nRT
(c) nRT
(d) None
Explanation: KE only.

Q244. Internal energy of diatomic gas is:
(a) 5/2 nRT ✅
(b) 3/2 nRT
(c) nRT
(d) None
Explanation: Translational + rotational.

Q245. Internal energy of triatomic gas is:
(a) 3nRT ✅
(b) 5/2 nRT
(c) 3/2 nRT
(d) None
Explanation: Translational + rotational + vibrational.

Q246. Mean free path increases with:
(a) Decrease in pressure ✅
(b) Increase in pressure
(c) Increase in density
(d) None
Explanation: Fewer collisions at low pressure.

Q247. Mean free path decreases with:
(a) Increase in pressure ✅
(b) Decrease in pressure
(c) Increase in volume
(d) None
Explanation: More collisions at high pressure.

Q248. Kinetic theory explains:
(a) Gas laws ✅
(b) Magnetism
(c) Electricity
(d) None
Explanation: Boyle’s, Charles’, Avogadro’s laws.

Q249. Boyle’s law states:
(a) PV = constant at constant T ✅
(b) V/T = constant
(c) P/T = constant
(d) None
Explanation: Pressure inversely proportional to volume.

Q250. Charles’ law states:
(a) V ∝ T at constant P ✅
(b) P ∝ T
(c) V ∝ P
(d) None
Explanation: Volume increases with temperature.

Q251. Gay-Lussac’s law states:
(a) P ∝ T at constant V ✅
(b) V ∝ T
(c) P ∝ V
(d) None
Explanation: Pressure increases with temperature.

Q252. Avogadro’s law states:
(a) Equal volumes have equal molecules ✅
(b) Equal masses have equal molecules
(c) Equal pressures have equal molecules
(d) None
Explanation: At same T and P.

Q253. Ideal gas constant R value is:
(a) 8.314 J/(mol·K) ✅
(b) 1
(c) 10
(d) None
Explanation: Universal constant.

Q254. Boltzmann constant k value is:
(a) 1.38 × 10⁻²³ J/K ✅
(b) 8.314 J/K
(c) 10 J/K
(d) None
Explanation: Energy per molecule per Kelvin.

Q255. Dalton’s law of partial pressures states:
(a) Total pressure = sum of partial pressures ✅
(b) Total pressure = product
(c) Total pressure = difference
(d) None
Explanation: Additive property.

Q256. Graham’s law of diffusion states:
(a) Rate ∝ 1/√density ✅
(b) Rate ∝ density
(c) Rate ∝ pressure
(d) None
Explanation: Lighter gases diffuse faster.

Q257. Mean kinetic energy per molecule is:
(a) 3/2 kT ✅
(b) kT
(c) ½kT
(d) None
Explanation: KE ∝ T.

Q258. Pressure of gas is proportional to:
(a) Temperature and density ✅
(b) Volume
(c) Shape
(d) None
Explanation: P ∝ ρT.

Q259. Internal energy of ideal gas is:
(a) Function of temperature only ✅
(b) Function of pressure
(c) Function of volume
(d) None
Explanation: U ∝ T.

Q260. Specific heat ratio γ determines:
(a) Speed of sound in gas ✅
(b) Pressure
(c) Volume
(d) None
Explanation: v = √(γRT/M).

Q261. Speed of sound in air is about:
(a) 343 m/s ✅
(b) 100 m/s
(c) 500 m/s
(d) None
Explanation: At room temperature.

Q262. Kinetic theory assumes collisions are:
(a) Elastic ✅
(b) Inelastic
(c) Plastic
(d) None
Explanation: No energy loss.

Q263. Kinetic theory assumes molecules are:
(a) Point masses ✅
(b) Extended bodies
(c) Charged particles
(d) None
Explanation: Negligible size.

Q264. Kinetic theory assumes intermolecular forces are:
(a) Negligible ✅
(b) Strong
(c) Moderate
(d) None
Explanation: Ideal gas assumption.

Q265. Pressure of gas is related to:
(a) Average kinetic energy ✅
(b) Potential energy
(c) Mass
(d) None
Explanation: P ∝ KE.

Q266. Internal energy of monoatomic gas is due to:
(a) Translational motion only ✅
(b) Rotational motion
(c) Vibrational motion
(d) None
Explanation: Monoatomic gases have only translational degrees of freedom.

Q267. Internal energy of diatomic gas is due to:
(a) Translational + rotational motion ✅
(b) Translational only
(c) Vibrational only
(d) None
Explanation: Diatomic gases have 5 degrees of freedom.

Q268. Internal energy of triatomic gas is due to:
(a) Translational + rotational + vibrational motion ✅
(b) Translational only
(c) Rotational only
(d) None
Explanation: Triatomic gases have 6 degrees of freedom.

Q269. Specific heat ratio γ affects:
(a) Speed of sound in gas ✅
(b) Pressure only
(c) Volume only
(d) None
Explanation: v = √(γRT/M).

Q270. Speed of sound in gas increases with:
(a) Temperature ✅
(b) Pressure
(c) Volume
(d) None
Explanation: Higher temperature → higher molecular speed.

Q271. Root mean square velocity depends on:
(a) Temperature and molar mass ✅
(b) Pressure only
(c) Volume only
(d) None
Explanation: v = √(3RT/M).

Q272. Average kinetic energy per molecule is:
(a) 3/2 kT ✅
(b) kT
(c) ½kT
(d) None
Explanation: Directly proportional to temperature.

Q273. Pressure of ideal gas is related to:
(a) Average kinetic energy ✅
(b) Potential energy
(c) Mass only
(d) None
Explanation: P ∝ KE of molecules.

Q274. Boyle’s law is explained by:
(a) Kinetic theory ✅
(b) Pascal’s law
(c) Archimedes’ principle
(d) None
Explanation: Pressure inversely proportional to volume.

Q275. Charles’ law is explained by:
(a) Kinetic theory ✅
(b) Pascal’s law
(c) Archimedes’ principle
(d) None
Explanation: Volume directly proportional to temperature.

Q276. Gay-Lussac’s law is explained by:
(a) Kinetic theory ✅
(b) Pascal’s law
(c) Archimedes’ principle
(d) None
Explanation: Pressure directly proportional to temperature.

Q277. Avogadro’s law is explained by:
(a) Kinetic theory ✅
(b) Pascal’s law
(c) Archimedes’ principle
(d) None
Explanation: Equal volumes contain equal molecules.

Q278. Dalton’s law of partial pressures is explained by:
(a) Kinetic theory ✅
(b) Pascal’s law
(c) Archimedes’ principle
(d) None
Explanation: Pressure is additive.

Q279. Graham’s law of diffusion is explained by:
(a) Kinetic theory ✅
(b) Pascal’s law
(c) Archimedes’ principle
(d) None
Explanation: Rate ∝ 1/√density.

Q280. Maxwell distribution curve shows:
(a) Distribution of molecular speeds ✅
(b) Distribution of pressure
(c) Distribution of volume
(d) None
Explanation: Probability distribution of speeds.

Q281. Most probable velocity is:
(a) √(2RT/M) ✅
(b) √(3RT/M)
(c) √(8RT/πM)
(d) None
Explanation: Derived from Maxwell distribution.

Q282. Average velocity is:
(a) √(8RT/πM) ✅
(b) √(3RT/M)
(c) √(2RT/M)
(d) None
Explanation: Mean speed of molecules.

Q283. RMS velocity is:
(a) √(3RT/M) ✅
(b) √(2RT/M)
(c) √(8RT/πM)
(d) None
Explanation: Root mean square speed.

Q284. Internal energy of ideal gas depends on:
(a) Temperature only ✅
(b) Pressure
(c) Volume
(d) None
Explanation: U ∝ T.

Q285. Specific heat ratio γ for monoatomic gas is:
(a) 5/3 ✅
(b) 7/5
(c) 1
(d) None
Explanation: Cp/Cv = 5/3.

Q286. Specific heat ratio γ for diatomic gas is:
(a) 7/5 ✅
(b) 5/3
(c) 1
(d) None
Explanation: Cp/Cv = 7/5.

Q287. Specific heat ratio γ for triatomic gas is:
(a) 4/3 ✅
(b) 5/3
(c) 7/5
(d) None
Explanation: Cp/Cv = 4/3.

Q288. Mean free path increases with:
(a) Decrease in pressure ✅
(b) Increase in pressure
(c) Increase in density
(d) None
Explanation: Fewer collisions at low pressure.

Q289. Mean free path decreases with:
(a) Increase in pressure ✅
(b) Decrease in pressure
(c) Increase in volume
(d) None
Explanation: More collisions at high pressure.

Q290. Kinetic theory assumes collisions are:
(a) Elastic ✅
(b) Inelastic
(c) Plastic
(d) None
Explanation: No energy loss.

Q291. Kinetic theory assumes molecules are:
(a) Point masses ✅
(b) Extended bodies
(c) Charged particles
(d) None
Explanation: Negligible size.

Q292. Kinetic theory assumes intermolecular forces are:
(a) Negligible ✅
(b) Strong
(c) Moderate
(d) None
Explanation: Ideal gas assumption.

Q293. Pressure of gas is proportional to:
(a) Density × Temperature ✅
(b) Volume only
(c) Shape
(d) None
Explanation: P ∝ ρT.

Q294. Internal energy of monoatomic gas is:
(a) 3/2 nRT ✅
(b) 5/2 nRT
(c) nRT
(d) None
Explanation: Translational KE only.

Q295. Internal energy of diatomic gas is:
(a) 5/2 nRT ✅
(b) 3/2 nRT
(c) nRT
(d) None
Explanation: Translational + rotational KE.

Q296. Internal energy of triatomic gas is:
(a) 3nRT ✅
(b) 5/2 nRT
(c) 3/2 nRT
(d) None
Explanation: Translational + rotational + vibrational KE.

Q297. Specific heat at constant volume (Cv) is:
(a) (f/2)R ✅
(b) fR
(c) R
(d) None
Explanation: f = degrees of freedom.

Q298. Specific heat at constant pressure (Cp) is:
(a) Cv + R ✅
(b) Cv – R
(c) Cv × R
(d) None
Explanation: Cp – Cv = R.

Q299. Ratio of specific heats γ is:
(a) Cp/Cv ✅
(b) Cv/Cp
(c) Cp – Cv
(d) None
Explanation: γ = Cp/Cv.

Q300. Kinetic theory explains:
(a) Gas laws and molecular motion ✅
(b) Magnetism
(c) Electricity
(d) None
Explanation: Basis of Boyle’s, Charles’, Avogadro’s laws.