Gravitation 

250 Gravitation MCQs with Answers | Physics Practice for Competitive Exams


This collection offers 250 multiple-choice questions with answers and clear explanations on Gravitation. It is designed for a global audience, making it useful for high school physics students, university aspirants, Olympiad participants, and competitive exam candidates worldwide.

What You’ll Gain
- Complete coverage of Gravitation topics: Newton’s Law, Gravity & Motion, Satellites, Escape Velocity, and Gravitational Potential.  
- School-level clarity: Each answer is explained in simple terms for easy understanding.  
- Advanced practice: Includes assertion–reason, numerical problems, and conceptual challenges.  
- Global relevance: Useful for SAT, GRE, NEET, GCSE, IB, and other international exams.  
- Exam readiness: Strengthen problem-solving skills, revise faster, and build confidence.

This MCQ bank is structured to help you learn smarter, practice deeper, and prepare better — whether you’re revising for class, teaching physics, or aiming for top scores in global exams.

Q1. Newton’s law of gravitation states that the force between two masses is:
(a) Directly proportional to product of masses ✅
(b) Inversely proportional to product of masses
(c) Directly proportional to square of distance
(d) Independent of distance
Explanation: F = Gm₁m₂/r².

Q2. The value of universal gravitational constant G is:
(a) 6.67 × 10⁻¹¹ N·m²/kg² ✅
(b) 9.8 N/kg
(c) 1.6 × 10⁻¹⁹ C
(d) 3 × 10⁸ m/s
Explanation: Standard value of G.

Q3. Dimensional formula of G is:
(a) [M⁻¹L³T⁻²] ✅
(b) [ML²T⁻²]
(c) [M¹L⁻²T²]
(d) [M⁻²L³T⁻¹]
Explanation: Derived from F = Gm₁m₂/r².

Q4. If distance between two masses is doubled, gravitational force becomes:
(a) One-fourth ✅
(b) Half
(c) Double
(d) Four times
Explanation: F ∝ 1/r².

Q5. Force between two 1 kg masses separated by 1 m:
(a) 6.67 × 10⁻¹¹ N ✅
(b) 9.8 N
(c) 1 N
(d) 0.1 N
Explanation: F = Gm₁m₂/r².

Q6. Gravitational force is always:
(a) Attractive ✅
(b) Repulsive
(c) Zero
(d) Depends on mass
Explanation: Gravity pulls masses together.

Q7. If mass of one body is doubled, force becomes:
(a) Double ✅
(b) Half
(c) Same
(d) Four times
Explanation: F ∝ m₁m₂.

Q8. If both masses are doubled, force becomes:
(a) Four times ✅
(b) Double
(c) Same
(d) Half
Explanation: F ∝ m₁m₂.

Q9. Gravitational constant G is:
(a) Same everywhere ✅
(b) Varies with place
(c) Depends on mass
(d) Depends on medium
Explanation: G is universal.

Q10. Unit of gravitational constant G:
(a) N·m²/kg² ✅
(b) N/kg
(c) J/kg
(d) m/s²
Explanation: Derived from formula.

Q11. Gravitational force between Earth and 1 kg mass at surface:
(a) 9.8 N ✅
(b) 10 N
(c) 1 N
(d) 100 N
Explanation: F = mg.

Q12. If distance between Earth and Moon is reduced to half, force becomes:
(a) Four times ✅
(b) Half
(c) Double
(d) Same
Explanation: F ∝ 1/r².

Q13. Gravitational force is weakest among:
(a) Fundamental forces ✅
(b) Electromagnetic
(c) Strong nuclear
(d) Weak nuclear
Explanation: Gravity is weakest.

Q14. Value of G was first measured by:
(a) Cavendish ✅
(b) Newton
(c) Einstein
(d) Galileo
Explanation: Cavendish experiment.

Q15. Gravitational force between two masses depends on:
(a) Masses and distance ✅
(b) Shape
(c) Volume
(d) Temperature
Explanation: F = Gm₁m₂/r².

Q16. If distance between two masses is tripled, force becomes:
(a) One-ninth ✅
(b) One-third
(c) Three times
(d) Nine times
Explanation: F ∝ 1/r².

Q17. Gravitational constant G is a:
(a) Scalar quantity ✅
(b) Vector quantity
(c) Depends on direction
(d) None
Explanation: G has magnitude only.

Q18. Gravitational force between two bodies is independent of:
(a) Medium between them ✅
(b) Mass
(c) Distance
(d) G
Explanation: Gravity acts through vacuum.

Q19. If distance between two masses is reduced to one-third, force becomes:
(a) Nine times ✅
(b) Three times
(c) One-third
(d) Same
Explanation: F ∝ 1/r².

Q20. Gravitational force between two masses is zero when:
(a) Distance → ∞ ✅
(b) Mass = 0
(c) G = 0
(d) None
Explanation: At infinite separation.

Q21. Gravitational constant G was determined using:
(a) Torsion balance ✅
(b) Spring balance
(c) Beam balance
(d) Pendulum
Explanation: Cavendish experiment.

Q22. Gravitational force is significant only when:
(a) Masses are large ✅
(b) Distance is small
(c) Both
(d) None
Explanation: Gravity is weak otherwise.

Q23. Gravitational force between two electrons is:
(a) Negligible ✅
(b) Equal to electric force
(c) Strong
(d) Infinite
Explanation: Gravity is weakest.

Q24. If distance between two masses is reduced to half, force becomes:
(a) Four times ✅
(b) Half
(c) Double
(d) Same
Explanation: F ∝ 1/r².

Q25. Gravitational force is responsible for:
(a) Planetary motion ✅
(b) Electric current
(c) Magnetism
(d) Nuclear fusion
Explanation: Gravity keeps planets in orbit.

Q26. Gravitational constant G is:
(a) Independent of medium ✅
(b) Depends on medium
(c) Depends on mass
(d) Depends on distance
Explanation: G is universal.

Q27. Gravitational force between two masses is inversely proportional to:
(a) Square of distance ✅
(b) Distance
(c) Cube of distance
(d) None
Explanation: F ∝ 1/r².

Q28. Gravitational force is:
(a) Central force ✅
(b) Non-central
(c) Random
(d) None
Explanation: Acts along line joining masses.

Q29. Gravitational force is:
(a) Conservative ✅
(b) Non-conservative
(c) Dissipative
(d) None
Explanation: Work done is path-independent.

Q30. Gravitational constant G is:
(a) Very small value ✅
(b) Very large
(c) Infinite
(d) Zero
Explanation: G = 6.67×10⁻¹¹.

Q31. Gravitational force between two 10 kg masses 2 m apart:
(a) 1.67 × 10⁻⁹ N ✅
(b) 6.67 × 10⁻¹¹ N
(c) 1 N
(d) 0.1 N
Explanation: F = Gm₁m₂/r².

Q32. Gravitational force is independent of:
(a) Nature of medium ✅
(b) Mass
(c) Distance
(d) G
Explanation: Gravity acts through vacuum.

Q33. Gravitational force is:
(a) Long-range force ✅
(b) Short-range
(c) Contact force
(d) None
Explanation: Acts over large distances.

Q34. Gravitational force is responsible for:
(a) Tides ✅
(b) Magnetism
(c) Electricity
(d) Nuclear force
Explanation: Moon’s gravity causes tides.

Q35. Gravitational force is:
(a) Weakest fundamental force ✅
(b) Strongest
(c) Equal to electromagnetic
(d) None
Explanation: Gravity is weakest.

Q36. Gravitational constant G is:
(a) Same for all pairs of masses ✅
(b) Different for different masses
(c) Depends on distance
(d) None
Explanation: G is universal.

Q37. Gravitational force is:
(a) Attractive only ✅
(b) Repulsive only
(c) Both
(d) None
Explanation: Gravity pulls masses together.

Q38. Gravitational force is:
(a) Mutual ✅
(b) One-sided
(c) Depends on heavier mass
(d) None
Explanation: Both masses attract each other.

Q39. Gravitational force is:
(a) Action-reaction pair ✅
(b) One-way
(c) Depends on G only
(d) None
Explanation: Newton’s third law applies.

Q40. Gravitational force is:
(a) Universal ✅
(b) Local
(c) Temporary
(d) None
Explanation: Acts between all masses.

Q41. Acceleration due to gravity at Earth’s surface is:
(a) 9.8 m/s² ✅
(b) 10 m/s²
(c) 8 m/s²
(d) 12 m/s²
Explanation: Standard value at sea level.

Q42. Value of g decreases with:
(a) Height above Earth ✅
(b) Depth below Earth
(c) Latitude
(d) All of these
Explanation: g varies with position.

Q43. At poles, value of g is:
(a) Maximum ✅
(b) Minimum
(c) Zero
(d) Same as equator
Explanation: Due to Earth’s rotation.

Q44. At equator, value of g is:
(a) Minimum ✅
(b) Maximum
(c) Zero
(d) Same everywhere
Explanation: Centrifugal force reduces g.

Q45. Acceleration due to gravity is independent of:
(a) Mass of body ✅
(b) Height
(c) Latitude
(d) Depth
Explanation: g depends only on Earth.

Q46. If radius of Earth increases, g:
(a) Decreases ✅
(b) Increases
(c) Same
(d) Zero
Explanation: g ∝ 1/R².

Q47. At height equal to Earth’s radius, g becomes:
(a) 1/4 of surface value ✅
(b) 1/2
(c) Same
(d) Zero
Explanation: g’ = g/(1+h/R)².

Q48. At depth equal to Earth’s radius, g becomes:
(a) Zero ✅
(b) Half
(c) Same
(d) Double
Explanation: g decreases linearly with depth.

Q49. At depth R/2, g becomes:
(a) Half ✅
(b) Zero
(c) Same
(d) Double
Explanation: g’ = g(1–d/R).

Q50. At height R/2, g becomes:
(a) 1/4 of surface value ✅
(b) Half
(c) Same
(d) Zero
Explanation: g’ = g/(1+h/R)².

Q51. Acceleration due to gravity at Moon’s surface is:
(a) 1/6 of Earth ✅
(b) Same as Earth
(c) Double
(d) Zero
Explanation: gMoon ≈ 1.6 m/s².

Q52. Weight of body is maximum at:
(a) Poles ✅
(b) Equator
(c) Centre of Earth
(d) None
Explanation: g is maximum at poles.

Q53. Weight of body is minimum at:
(a) Equator ✅
(b) Poles
(c) Centre
(d) None
Explanation: Centrifugal force reduces g.

Q54. At centre of Earth, g is:
(a) Zero ✅
(b) Maximum
(c) Minimum
(d) Same
Explanation: g decreases linearly to zero.

Q55. If Earth stops rotating, value of g at equator:
(a) Increases ✅
(b) Decreases
(c) Same
(d) Zero
Explanation: Centrifugal force vanishes.

Q56. Apparent weight in lift moving upward with acceleration a:
(a) mg+ma ✅
(b) mg–ma
(c) mg
(d) Zero
Explanation: Effective force increases.

Q57. Apparent weight in lift moving downward with acceleration a:
(a) mg–ma ✅
(b) mg+ma
(c) mg
(d) Zero
Explanation: Effective force decreases.

Q58. Apparent weight in free fall:
(a) Zero ✅
(b) mg
(c) Infinite
(d) Same
Explanation: Condition of weightlessness.

Q59. Weightlessness occurs in:
(a) Free fall ✅
(b) Lift at rest
(c) Lift moving upward
(d) None
Explanation: Apparent weight = 0.

Q60. Value of g at altitude h is given by:
(a) g’ = g(1–2h/R) ✅
(b) g’ = g(1+h/R)
(c) g’ = g(1–h/R)
(d) g’ = g(1–h²/R²)
Explanation: Approximate formula.

Q61. Value of g at depth d is:
(a) g’ = g(1–d/R) ✅
(b) g’ = g(1–2d/R)
(c) g’ = g(1–d²/R²)
(d) g’ = g
Explanation: Linear decrease.

Q62. At height equal to Earth’s radius, g becomes:
(a) 1/4 g ✅
(b) 1/2 g
(c) 1/3 g
(d) Same
Explanation: g’ = g/(2R)².

Q63. At depth equal to Earth’s radius, g becomes:
(a) Zero ✅
(b) Half
(c) Same
(d) Double
Explanation: g decreases linearly.

Q64. Variation of g with latitude is due to:
(a) Earth’s rotation ✅
(b) Earth’s revolution
(c) Shape of Earth
(d) None
Explanation: Centrifugal force effect.

Q65. Value of g at equator is less than poles by:
(a) 0.034 m/s² ✅
(b) 0.1 m/s²
(c) 1 m/s²
(d) 0.5 m/s²
Explanation: Due to rotation.

Q66. Weight of body at poles compared to equator:
(a) Greater ✅
(b) Less
(c) Same
(d) Zero
Explanation: g is maximum at poles.

Q67. At height h << R, g decreases:
(a) Linearly with h ✅
(b) Quadratically
(c) Constant
(d) None
Explanation: Approximate formula.

Q68. At depth d << R, g decreases:
(a) Linearly with d ✅
(b) Quadratically
(c) Constant
(d) None
Explanation: Approximate formula.

Q69. At centre of Earth, weight of body is:
(a) Zero ✅
(b) Maximum
(c) Minimum
(d) Same
Explanation: g = 0 at centre.

Q70. Apparent weight in lift moving downward with g:
(a) Zero ✅
(b) mg
(c) Infinite
(d) Same
Explanation: Free fall condition.

Q71. Apparent weight in lift moving upward with g:
(a) 2mg ✅
(b) mg
(c) Zero
(d) Infinite
Explanation: Effective acceleration = 2g.

Q72. Apparent weight in lift moving downward with g/2:
(a) mg/2 ✅
(b) mg
(c) Zero
(d) 2mg
Explanation: Effective acceleration = g–g/2.

Q73. Apparent weight in lift moving upward with g/2:
(a) 3mg/2 ✅
(b) mg
(c) Zero
(d) 2mg
Explanation: Effective acceleration = g+g/2.

Q74. Weightlessness experienced by astronauts is due to:
(a) Free fall of satellite ✅
(b) No gravity
(c) Zero mass
(d) None
Explanation: Satellite in orbit is in free fall.

Q75. Value of g decreases with:
(a) Altitude and depth ✅
(b) Latitude only
(c) Mass of body
(d) None
Explanation: g varies with position.

Q76. At equator, centrifugal force is:
(a) Maximum ✅
(b) Minimum
(c) Zero
(d) Same everywhere
Explanation: Rotation effect.

Q77. At poles, centrifugal force is:
(a) Zero ✅
(b) Maximum
(c) Minimum
(d) Same
Explanation: Axis of rotation passes through poles.

Q78. At equator, apparent weight is:
(a) Less than true weight ✅
(b) Greater
(c) Same
(d) Zero
Explanation: Centrifugal force reduces weight.

Q79. At poles, apparent weight is:
(a) Equal to true weight ✅
(b) Less
(c) Greater
(d) Zero
Explanation: No centrifugal force.

Q80. At height h, g decreases as:
(a) 1/(1+h/R)² ✅
(b) 1/(1+h/R)
(c) 1–h/R
(d) 1–2h/R
Explanation: Exact formula.

Q81. At depth d, g decreases as:
(a) 1–d/R ✅
(b) 1–2d/R
(c) 1–d²/R²
(d) 1–h/R
Explanation: Exact formula.

Q82. At centre of Earth, g is:
(a) Zero ✅
(b) Maximum
(c) Minimum
(d) Same
Explanation: g decreases linearly to zero.

Q83. At equator, g is less due to:
(a) Centrifugal force ✅
(b) Gravity
(c) Mass
(d) None
Explanation: Rotation effect.

Q84. At poles, g is more due to:
(a) No centrifugal force ✅
(b) More gravity
(c) Less mass
(d) None
Explanation: Rotation effect.

Q85. At equator, weight of body is:
(a) Minimum ✅
(b) Maximum
(c) Same
(d) Zero
Explanation: Centrifugal force reduces weight.

Q86. At poles, weight of body is:
(a) Maximum ✅
(b) Minimum
(c) Same
(d) Zero
Explanation: g is maximum at poles due to no centrifugal force.

Q87. At equator, weight of body is:
(a) Minimum ✅
(b) Maximum
(c) Same
(d) Zero
Explanation: Centrifugal force reduces apparent weight.

Q88. At equator, centrifugal force is:
(a) Maximum ✅
(b) Minimum
(c) Zero
(d) Same everywhere
Explanation: Rotation effect is strongest at equator.

Q89. At poles, centrifugal force is:
(a) Zero ✅
(b) Maximum
(c) Minimum
(d) Same
Explanation: Axis of rotation passes through poles.

Q90. At equator, apparent weight is:
(a) Less than true weight ✅
(b) Greater
(c) Same
(d) Zero
Explanation: Centrifugal force reduces effective g.


Q91. Orbital velocity of satellite near Earth’s surface is:
(a) 7.9 km/s ✅
(b) 11.2 km/s
(c) 5 km/s
(d) 9.8 km/s
Explanation: v = √(GM/R).

Q92. Escape velocity from Earth’s surface is:
(a) 11.2 km/s ✅
(b) 7.9 km/s
(c) 9.8 km/s
(d) 12 km/s
Explanation: v = √(2GM/R).

Q93. Orbital velocity is independent of:
(a) Mass of satellite ✅
(b) Radius of orbit
(c) Mass of Earth
(d) G
Explanation: Depends only on Earth and orbit radius.

Q94. Escape velocity is independent of:
(a) Mass of body ✅
(b) Radius of Earth
(c) Mass of Earth
(d) G
Explanation: v depends only on Earth’s parameters.

Q95. Time period of satellite near Earth’s surface:
(a) 84 minutes ✅
(b) 24 hours
(c) 12 hours
(d) 48 hours
Explanation: T = 2Ï€R/v.

Q96. Geostationary satellite time period:
(a) 24 hours ✅
(b) 12 hours
(c) 48 hours
(d) 6 hours
Explanation: Matches Earth’s rotation.

Q97. Height of geostationary satellite above Earth:
(a) 36,000 km ✅
(b) 24,000 km
(c) 12,000 km
(d) 48,000 km
Explanation: Standard orbit altitude.

Q98. Orbital velocity decreases with:
(a) Increase in altitude ✅
(b) Decrease in altitude
(c) Mass of satellite
(d) None
Explanation: v ∝ 1/√r.

Q99. Escape velocity on Moon is:
(a) 2.3 km/s ✅
(b) 11.2 km/s
(c) 5 km/s
(d) 1 km/s
Explanation: Lower due to smaller mass and radius.

Q100. Escape velocity on Mars is:
(a) 5 km/s ✅
(b) 11.2 km/s
(c) 2.3 km/s
(d) 7.9 km/s
Explanation: Intermediate between Earth and Moon.

Q101. Orbital velocity of satellite at height h:
(a) √(GM/(R+h)) ✅
(b) √(GM/R)
(c) √(2GM/R)
(d) √(GMh)
Explanation: Derived from centripetal balance.

Q102. Escape velocity formula:
(a) √(2GM/R) ✅
(b) √(GM/R)
(c) √(GMh)
(d) √(2GMh)
Explanation: Derived from energy conservation.

Q103. Orbital velocity formula:
(a) √(GM/R) ✅
(b) √(2GM/R)
(c) √(GMh)
(d) √(2GMh)
Explanation: Derived from centripetal force.

Q104. Escape velocity is √2 times:
(a) Orbital velocity ✅
(b) Velocity of light
(c) g
(d) None
Explanation: vâ‚‘ = √2 vâ‚’.

Q105. Satellite in polar orbit time period:
(a) 90 minutes ✅
(b) 24 hours
(c) 12 hours
(d) 48 hours
Explanation: Near Earth orbit.

Q106. Geostationary satellite is used for:
(a) Communication ✅
(b) Weather
(c) Navigation
(d) Astronomy
Explanation: Fixed position relative to Earth.

Q107. Polar satellites are used for:
(a) Weather observation ✅
(b) Communication
(c) Astronomy
(d) None
Explanation: Cover entire Earth.

Q108. Escape velocity depends on:
(a) Mass and radius of planet ✅
(b) Mass of body
(c) Height
(d) None
Explanation: v ∝ √(M/R).

Q109. Orbital velocity depends on:
(a) Radius of orbit ✅
(b) Mass of satellite
(c) Shape
(d) None
Explanation: v ∝ 1/√r.

Q110. Escape velocity on Earth is:
(a) 11.2 km/s ✅
(b) 7.9 km/s
(c) 9.8 km/s
(d) 12 km/s
Explanation: Standard value.

Q111. Orbital velocity near Earth is:
(a) 7.9 km/s ✅
(b) 11.2 km/s
(c) 9.8 km/s
(d) 5 km/s
Explanation: Standard value.

Q112. Escape velocity on Jupiter is:
(a) 60 km/s ✅
(b) 11.2 km/s
(c) 20 km/s
(d) 30 km/s
Explanation: Very high due to mass.

Q113. Escape velocity on Mercury is:
(a) 4.3 km/s ✅
(b) 11.2 km/s
(c) 2.3 km/s
(d) 7.9 km/s
Explanation: Smaller planet.

Q114. Escape velocity on Venus is:
(a) 10.3 km/s ✅
(b) 11.2 km/s
(c) 7.9 km/s
(d) 5 km/s
Explanation: Slightly less than Earth.

Q115. Escape velocity on Saturn is:
(a) 36 km/s ✅
(b) 11.2 km/s
(c) 20 km/s
(d) 30 km/s
Explanation: Large planet.

Q116. Escape velocity on Uranus is:
(a) 21 km/s ✅
(b) 11.2 km/s
(c) 30 km/s
(d) 15 km/s
Explanation: Intermediate.

Q117. Escape velocity on Neptune is:
(a) 23 km/s ✅
(b) 11.2 km/s
(c) 30 km/s
(d) 15 km/s
Explanation: Large planet.

Q118. Escape velocity on Pluto is:
(a) 1.2 km/s ✅
(b) 11.2 km/s
(c) 2.3 km/s
(d) 5 km/s
Explanation: Very small planet.

Q119. Orbital velocity of satellite decreases with:
(a) Increase in altitude ✅
(b) Decrease in altitude
(c) Mass of satellite
(d) None
Explanation: v ∝ 1/√r.

Q120. Escape velocity is independent of:
(a) Mass of body ✅
(b) Radius of planet
(c) Mass of planet
(d) G
Explanation: Depends only on planet.

Q121. Orbital velocity is independent of:
(a) Mass of satellite ✅
(b) Radius of orbit
(c) Mass of planet
(d) G
Explanation: Depends only on planet and orbit.

Q122. Escape velocity is maximum for:
(a) Jupiter ✅
(b) Earth
(c) Moon
(d) Mars
Explanation: Largest planet.

Q123. Escape velocity is minimum for:
(a) Pluto ✅
(b) Moon
(c) Mars
(d) Mercury
Explanation: Smallest planet.

Q124. Orbital velocity is maximum for:
(a) Satellite near Earth ✅
(b) Satellite far from Earth
(c) Geostationary satellite
(d) None
Explanation: v ∝ 1/√r.

Q125. Orbital velocity is minimum for:
(a) Geostationary satellite ✅
(b) Polar satellite
(c) Near Earth satellite
(d) None
Explanation: Higher altitude → lower velocity.

Q126. Escape velocity is related to orbital velocity by:
(a) vâ‚‘ = √2 vâ‚’ ✅
(b) vâ‚‘ = vâ‚’
(c) vâ‚‘ = 2vâ‚’
(d) vâ‚‘ = vâ‚’/2
Explanation: Derived relation.

Q127. Orbital velocity of satellite at height h:
(a) √(GM/(R+h)) ✅
(b) √(GM/R)
(c) √(2GM/R)
(d) √(GMh)
Explanation: Formula.

Q128. Escape velocity formula:
(a) √(2GM/R) ✅
(b) √(GM/R)
(c) √(GMh)
(d) √(2GMh)
Explanation: Formula.

Q129. Orbital velocity formula:
(a) √(GM/R) ✅
(b) √(2GM/R)
(c) √(GMh)
(d) √(2GMh)
Explanation: Formula.

Q130. Escape velocity is √2 times orbital velocity:
(a) True ✅
(b) False
(c) Sometimes
(d) None
Explanation: vâ‚‘ = √2 vâ‚’.

Q131. Gravitational potential at Earth’s surface is:
(a) –GM/R ✅
(b) GM/R
(c) –GM/R²
(d) GM/R²
Explanation: Potential = –GM/R.

Q132. Gravitational potential is always:
(a) Negative ✅
(b) Positive
(c) Zero
(d) Depends on mass
Explanation: Work done to bring mass from infinity is negative.

Q133. Gravitational potential energy of mass m at Earth’s surface:
(a) –GMm/R ✅
(b) GMm/R
(c) –GMm/R²
(d) GMm/R²
Explanation: U = –GMm/R.

Q134. Gravitational field intensity at Earth’s surface is:
(a) GM/R² ✅
(b) GM/R
(c) –GM/R²
(d) –GM/R
Explanation: E = GM/R².

Q135. Gravitational field intensity is:
(a) Vector quantity ✅
(b) Scalar quantity
(c) Constant
(d) None
Explanation: Has magnitude and direction.

Q136. Gravitational potential is:
(a) Scalar quantity ✅
(b) Vector quantity
(c) Constant
(d) None
Explanation: Only magnitude.

Q137. Gravitational potential energy is:
(a) Negative ✅
(b) Positive
(c) Zero
(d) Depends on mass
Explanation: Work done against gravity is negative.

Q138. Gravitational potential at infinity is:
(a) Zero ✅
(b) Infinite
(c) Negative
(d) Positive
Explanation: Reference point.

Q139. Gravitational field intensity is defined as:
(a) Force per unit mass ✅
(b) Force per unit charge
(c) Work per unit charge
(d) None
Explanation: E = F/m.

Q140. Gravitational potential is defined as:
(a) Work done per unit mass ✅
(b) Work done per unit charge
(c) Force per unit mass
(d) None
Explanation: V = W/m.

Q141. Gravitational potential energy of system of two masses:
(a) –Gm₁m₂/r ✅
(b) Gm₁m₂/r
(c) –Gm₁m₂/r²
(d) Gm₁m₂/r²
Explanation: U = –Gm₁m₂/r.

Q142. Gravitational potential energy is:
(a) Path independent ✅
(b) Path dependent
(c) Constant
(d) None
Explanation: Conservative force.

Q143. Gravitational field intensity is:
(a) Conservative ✅
(b) Non-conservative
(c) Dissipative
(d) None
Explanation: Work done is path independent.

Q144. Gravitational potential energy is maximum at:
(a) Infinity ✅
(b) Earth’s surface
(c) Centre
(d) None
Explanation: U = 0 at infinity.

Q145. Gravitational potential energy is minimum at:
(a) Earth’s surface ✅
(b) Infinity
(c) Centre
(d) None
Explanation: Negative maximum.

Q146. Gravitational potential at centre of Earth is:
(a) –3GM/2R ✅
(b) –GM/R
(c) –GM/2R
(d) Zero
Explanation: Derived from integration.

Q147. Gravitational potential energy at centre of Earth is:
(a) –3GMm/2R ✅
(b) –GMm/R
(c) –GMm/2R
(d) Zero
Explanation: Derived from integration.

Q148. Gravitational field intensity inside Earth varies:
(a) Linearly with distance from centre ✅
(b) Constant
(c) Inversely
(d) None
Explanation: E ∝ r.

Q149. Gravitational potential inside Earth varies:
(a) Quadratically with distance ✅
(b) Linearly
(c) Constant
(d) None
Explanation: Derived relation.

Q150. Gravitational potential energy of system of n masses:
(a) –Σ(Gmáµ¢mâ±¼/rᵢⱼ) ✅
(b) Σ(Gmᵢmⱼ/rᵢⱼ)
(c) –Σ(Gmáµ¢mâ±¼/rᵢⱼ²)
(d) None
Explanation: Summation over pairs.

Q151. Gravitational field intensity at infinity is:
(a) Zero ✅
(b) Infinite
(c) Negative
(d) Positive
Explanation: Force vanishes at infinity.

Q152. Gravitational potential at infinity is:
(a) Zero ✅
(b) Infinite
(c) Negative
(d) Positive
Explanation: Reference point.

Q153. Gravitational potential energy at infinity is:
(a) Zero ✅
(b) Infinite
(c) Negative
(d) Positive
Explanation: Reference point.

Q154. Gravitational potential energy is:
(a) Negative quantity ✅
(b) Positive
(c) Zero
(d) None
Explanation: Work done against gravity.

Q155. Gravitational field intensity is:
(a) Force per unit mass ✅
(b) Work per unit charge
(c) Force per unit charge
(d) None
Explanation: Definition.

Q156. Gravitational potential is:
(a) Work done per unit mass ✅
(b) Work per unit charge
(c) Force per unit mass
(d) None
Explanation: Definition.

Q157. Gravitational potential energy is:
(a) Work done to bring mass from infinity ✅
(b) Work done to move charge
(c) Work done to move electron
(d) None
Explanation: Definition.

Q158. Gravitational potential is:
(a) Scalar quantity ✅
(b) Vector quantity
(c) Constant
(d) None
Explanation: Only magnitude.

Q159. Gravitational field intensity is:
(a) Vector quantity ✅
(b) Scalar quantity
(c) Constant
(d) None
Explanation: Has direction.

Q160. Gravitational potential energy is:
(a) Conservative ✅
(b) Non-conservative
(c) Dissipative
(d) None
Explanation: Path independent.

Q161. Assertion (A): Gravitational force is always attractive.
Reason (R): Mass is always positive.
(a) Both A and R true, R explains A ✅
(b) Both true, R does not explain A
(c) A true, R false
(d) Both false

Q162. Assertion (A): Value of g decreases with altitude.
Reason (R): Distance from Earth’s centre increases.
(a) Both A and R true, R explains A ✅
(b) Both true, R does not explain A
(c) A true, R false
(d) Both false

Q163. A body weighs 98 N on Earth. Its mass is:
(a) 10 kg ✅
(b) 9.8 kg
(c) 98 kg
(d) 100 kg
Explanation: m = W/g = 98/9.8.

Q164. A body of mass 60 kg weighs how much on Moon?
(a) 100 N ✅
(b) 600 N
(c) 60 N
(d) 10 N
Explanation: gMoon ≈ 1/6 gEarth.

Q165. A body of mass 50 kg weighs how much at Earth’s surface?
(a) 490 N ✅
(b) 50 N
(c) 98 N
(d) 100 N
Explanation: W = mg.

Q166. A body of mass 10 kg weighs how much at height equal to Earth’s radius?
(a) 24.5 N ✅
(b) 49 N
(c) 98 N
(d) 0 N
Explanation: g’ = g/4.

Q167. A body of mass 20 kg weighs how much at depth R/2?
(a) 98 N ✅
(b) 196 N
(c) 49 N
(d) 0 N
Explanation: g’ = g/2.

Q168. A body of mass 5 kg weighs how much at centre of Earth?
(a) 0 N ✅
(b) 49 N
(c) 98 N
(d) 10 N
Explanation: g = 0 at centre.

Q169. A body of mass 2 kg weighs how much at poles?
(a) 19.6 N ✅
(b) 20 N
(c) 18 N
(d) 0 N
Explanation: g = 9.8 m/s².

Q170. A body of mass 2 kg weighs how much at equator?
(a) Slightly less than 19.6 N ✅
(b) 19.6 N
(c) 20 N
(d) 0 N
Explanation: Centrifugal force reduces weight.

Q171. A body of mass 1 kg weighs how much on Moon?
(a) 1.6 N ✅
(b) 9.8 N
(c) 10 N
(d) 0 N
Explanation: gMoon ≈ 1.6 m/s².

Q172. Escape velocity on Earth is:
(a) 11.2 km/s ✅
(b) 7.9 km/s
(c) 9.8 km/s
(d) 12 km/s

Q173. Orbital velocity near Earth is:
(a) 7.9 km/s ✅
(b) 11.2 km/s
(c) 9.8 km/s
(d) 5 km/s

Q174. Escape velocity on Moon is:
(a) 2.3 km/s ✅
(b) 11.2 km/s
(c) 7.9 km/s
(d) 5 km/s

Q175. Escape velocity on Mars is:
(a) 5 km/s ✅
(b) 11.2 km/s
(c) 2.3 km/s
(d) 7.9 km/s

Q176. Orbital velocity of satellite at height h:
(a) √(GM/(R+h)) ✅
(b) √(GM/R)
(c) √(2GM/R)
(d) √(GMh)

Q177. Escape velocity formula:
(a) √(2GM/R) ✅
(b) √(GM/R)
(c) √(GMh)
(d) √(2GMh)

Q178. Orbital velocity formula:
(a) √(GM/R) ✅
(b) √(2GM/R)
(c) √(GMh)
(d) √(2GMh)

Q179. Escape velocity is √2 times orbital velocity:
(a) True ✅
(b) False
(c) Sometimes
(d) None

Q180. Assertion (A): Geostationary satellites are used for communication.
Reason (R): They remain fixed relative to Earth.
(a) Both A and R true, R explains A ✅
(b) Both true, R does not explain A
(c) A true, R false
(d) Both false

Q181. Assertion (A): Polar satellites are used for weather observation.
Reason (R): They cover entire Earth.
(a) Both A and R true, R explains A ✅
(b) Both true, R does not explain A
(c) A true, R false
(d) Both false

Q182. A body of mass 100 kg weighs how much at depth R/4?
(a) 735 N ✅
(b) 980 N
(c) 490 N
(d) 0 N
Explanation: g’ = g(1–d/R).

Q183. A body of mass 50 kg weighs how much at height R?
(a) 122.5 N ✅
(b) 245 N
(c) 490 N
(d) 0 N
Explanation: g’ = g/4.

Q184. A body of mass 40 kg weighs how much at depth R/2?
(a) 196 N ✅
(b) 392 N
(c) 490 N
(d) 0 N
Explanation: g’ = g/2.

Q185. A body of mass 10 kg weighs how much at equator?
(a) Slightly less than 98 N ✅
(b) 98 N
(c) 100 N
(d) 0 N
Explanation: Centrifugal force reduces weight.

Q186. Assertion (A): Weightlessness occurs in free fall.
Reason (R): Apparent weight becomes zero.
(a) Both A and R true, R explains A ✅
(b) Both true, R does not explain A
(c) A true, R false
(d) Both false

Q187. Assertion (A): g decreases with depth.
Reason (R): Effective mass of Earth decreases.
(a) Both A and R true, R explains A ✅
(b) Both true, R does not explain A
(c) A true, R false
(d) Both false

Q188. Assertion (A): g decreases with altitude.
Reason (R): Distance from Earth’s centre increases.
(a) Both A and R true, R explains A ✅
(b) Both true, R does not explain A
(c) A true, R false
(d) Both false

Q189. Assertion (A): g is maximum at poles.
Reason (R): Centrifugal force is zero at poles.
(a) Both A and R true, R explains A ✅
(b) Both true, R does not explain A
(c) A true, R false
(d) Both false

Q190. Assertion (A): g is minimum at equator.
Reason (R): Centrifugal force is maximum at equator.
(a) Both A and R true, R explains A ✅
(b) Both true, R does not explain A
(c) A true, R false
(d) Both false

Q191. A body of mass 5 kg weighs how much at poles?
(a) 49 N ✅
(b) 50 N
(c) 48 N
(d) 0 N

Q192. A body of mass 5 kg weighs how much at equator?
(a) Slightly less than 49 N ✅
(b) 49 N
(c) 50 N
(d) 0 N

Q193. Escape velocity on Earth is:
(a) 11.2 km/s ✅
(b) 7.9 km/s
(c) 9.8 km/s
(d) 12 km/s

Q194. Orbital velocity near Earth is:
(a) 7.9 km/s ✅
(b) 11.2 km/s
(c) 9.8 km/s
(d) 5 km/s

Q195. Escape velocity on Moon is:
(a) 2.3 km/s ✅
(b) 11.2 km/s
(c) 7.9 km/s
(d) 5 km/s

Q196. Escape velocity on Mars is:
(a) 5 km/s ✅
(b) 11.2 km/s
(c) 2.3 km/s
(d) 7.9 km/s

Q197. Orbital velocity of satellite at height h:
(a) √(GM/(R+h)) ✅
(b) √(GM/R)
(c) √(2GM/R)
(d) √(GMh)

Q198. Escape velocity formula:
(a) √(2GM/R) ✅
(b) √(GM/R)
(c) √(GMh)
(d) √(2GMh)

Q199. Orbital velocity formula is:
(a) √(GM/R) ✅
(b) √(2GM/R)
(c) √(GMh)
(d) √(2GMh)
Explanation: Derived from centripetal force balance.

Q200. Escape velocity is related to orbital velocity by:
(a) vâ‚‘ = √2 vâ‚’ ✅
(b) vâ‚‘ = vâ‚’
(c) vâ‚‘ = 2vâ‚’
(d) vâ‚‘ = vâ‚’/2
Explanation: From energy conservation, escape velocity is √2 times orbital velocity.

Q201. Assertion (A): Escape velocity is independent of mass of body.
Reason (R): Gravitational force and required kinetic energy both scale with mass.
(a) Both A and R true, R explains A ✅
(b) Both true, R does not explain A
(c) A true, R false
(d) Both false

Q202. A satellite is shifted from low Earth orbit (500 km) to geostationary orbit (36,000 km). The energy required is mainly due to:
(a) Increase in potential energy ✅
(b) Increase in kinetic energy
(c) Decrease in potential energy
(d) None

Q203. Which graph correctly shows variation of g with depth inside Earth?
(a) Linear decrease to zero at centre ✅
(b) Constant
(c) Inverse square
(d) Exponential

Q204. Which graph correctly shows variation of g with altitude?
(a) Inverse square decrease ✅
(b) Linear decrease
(c) Constant
(d) Exponential

Q205. Orbital velocity of satellite at altitude h is derived by equating:
(a) Centripetal force and gravitational force ✅
(b) Kinetic energy and potential energy
(c) Work and power
(d) None

Q206. Escape velocity is derived by equating:
(a) Kinetic energy and gravitational potential energy ✅
(b) Centripetal force and gravitational force
(c) Work and power
(d) None

Q207. A satellite in polar orbit covers:
(a) Entire Earth surface ✅
(b) Only equator
(c) Only poles
(d) None

Q208. Assertion (A): Geostationary satellites are placed above equator.
Reason (R): They must match Earth’s rotation without inclination.
(a) Both A and R true, R explains A ✅
(b) Both true, R does not explain A
(c) A true, R false
(d) Both false

Q209. A satellite in geostationary orbit has angular velocity equal to:
(a) Earth’s angular velocity ✅
(b) Twice Earth’s angular velocity
(c) Half Earth’s angular velocity
(d) None

Q210. Orbital velocity decreases with altitude because:
(a) Centripetal force requirement decreases ✅
(b) Mass of satellite decreases
(c) G decreases
(d) None

Q211. Escape velocity on Earth is 11.2 km/s. On a planet with twice Earth’s radius and same mass, escape velocity will be:
(a) Less than Earth ✅
(b) Greater
(c) Same
(d) Infinite
Explanation: v ∝ √(M/R).

Q212. Assertion (A): Gravitational potential is negative.
Reason (R): Work is required to bring mass from infinity.
(a) Both A and R true, R explains A ✅
(b) Both true, R does not explain A
(c) A true, R false
(d) Both false

Q213. Gravitational field intensity inside Earth varies as:
(a) Directly proportional to distance from centre ✅
(b) Inversely proportional
(c) Constant
(d) None

Q214. Gravitational potential inside Earth varies as:
(a) Quadratic with distance ✅
(b) Linear
(c) Constant
(d) None

Q215. Assertion (A): Weightlessness occurs in orbit.
Reason (R): Satellite and astronaut both fall with same acceleration.
(a) Both A and R true, R explains A ✅
(b) Both true, R does not explain A
(c) A true, R false
(d) Both false

Q216. A satellite in orbit has total energy:
(a) Negative ✅
(b) Positive
(c) Zero
(d) Infinite
Explanation: Bound system energy is negative.

Q217. Total energy of satellite in orbit is:
(a) –GMm/2r ✅
(b) –GMm/r
(c) GMm/r
(d) None
Explanation: E = K + U.

Q218. Kinetic energy of satellite in orbit is:
(a) +GMm/2r ✅
(b) –GMm/2r
(c) GMm/r
(d) None
Explanation: K = –U/2.

Q219. Potential energy of satellite in orbit is:
(a) –GMm/r ✅
(b) –GMm/2r
(c) GMm/r
(d) None
Explanation: U = –GMm/r.

Q220. Ratio of kinetic energy to potential energy of satellite in orbit is:
(a) –1/2 ✅
(b) –1
(c) +1/2
(d) +1
Explanation: K = –U/2.

Q221. Assertion (A): Orbital velocity does not depend on mass of satellite.
Reason (R): Gravitational force and centripetal force both scale with mass.
(a) Both A and R true, R explains A ✅
(b) Both true, R does not explain A
(c) A true, R false
(d) Both false

Q222. A satellite in orbit has total energy:
(a) Negative ✅
(b) Positive
(c) Zero
(d) Infinite
Explanation: Bound systems always have negative total energy.

Q223. Total energy of satellite in orbit is:
(a) –GMm/2r ✅
(b) –GMm/r
(c) GMm/r
(d) None
Explanation: E = K + U, with K = +GMm/2r and U = –GMm/r.

Q224. Kinetic energy of satellite in orbit is:
(a) +GMm/2r ✅
(b) –GMm/2r
(c) GMm/r
(d) None
Explanation: K = –U/2.

Q225. Potential energy of satellite in orbit is:
(a) –GMm/r ✅
(b) –GMm/2r
(c) GMm/r
(d) None
Explanation: U = –GMm/r.

Q226. Ratio of kinetic energy to potential energy of satellite in orbit is:
(a) –1/2 ✅
(b) –1
(c) +1/2
(d) +1
Explanation: K = –U/2.

Q227. Assertion (A): Geostationary satellites appear fixed in sky.
Reason (R): Their time period equals Earth’s rotation period.
(a) Both A and R true, R explains A ✅
(b) Both true, R does not explain A
(c) A true, R false
(d) Both false

Q228. Height of geostationary satellite above Earth’s surface is about:
(a) 36,000 km ✅
(b) 24,000 km
(c) 12,000 km
(d) 48,000 km
Explanation: Standard orbit altitude.

Q229. Polar satellites are mainly used for:
(a) Weather observation ✅
(b) Communication
(c) Astronomy
(d) None
Explanation: They scan entire Earth surface.

Q230. Assertion (A): Escape velocity is √2 times orbital velocity.
Reason (R): Escape velocity is derived from energy conservation.
(a) Both A and R true, R explains A ✅
(b) Both true, R does not explain A
(c) A true, R false
(d) Both false

Q231. Orbital velocity near Earth is about:
(a) 7.9 km/s ✅
(b) 11.2 km/s
(c) 9.8 km/s
(d) 5 km/s
Explanation: Standard value for low Earth orbit.

Q232. Escape velocity from Earth’s surface is about:
(a) 11.2 km/s ✅
(b) 7.9 km/s
(c) 9.8 km/s
(d) 12 km/s
Explanation: Derived from v = √(2GM/R).

Q233. Assertion (A): Gravitational potential is scalar.
Reason (R): It has magnitude only, no direction.
(a) Both A and R true, R explains A ✅
(b) Both true, R does not explain A
(c) A true, R false
(d) Both false

Q234. Assertion (A): Gravitational field intensity is vector.
Reason (R): It has both magnitude and direction.
(a) Both A and R true, R explains A ✅
(b) Both true, R does not explain A
(c) A true, R false
(d) Both false

Q235. Gravitational potential energy at infinity is:
(a) Zero ✅
(b) Positive
(c) Negative
(d) Infinite
Explanation: Infinity is taken as reference point.

Q236. Gravitational potential at Earth’s surface is:
(a) –GM/R ✅
(b) GM/R
(c) –GM/R²
(d) GM/R²
Explanation: Potential = –GM/R.

Q237. Assertion (A): g decreases with altitude.
Reason (R): Distance from Earth’s centre increases.
(a) Both A and R true, R explains A ✅
(b) Both true, R does not explain A
(c) A true, R false
(d) Both false

Q238. Assertion (A): g decreases with depth.
Reason (R): Effective mass of Earth decreases.
(a) Both A and R true, R explains A ✅
(b) Both true, R does not explain A
(c) A true, R false
(d) Both false

Q239. At centre of Earth, value of g is:
(a) Zero ✅
(b) Maximum
(c) Minimum
(d) Same
Explanation: g decreases linearly to zero at centre.

Q240. At poles, value of g is:
(a) Maximum ✅
(b) Minimum
(c) Zero
(d) Same
Explanation: No centrifugal force at poles.

Q241. At equator, value of g is:
(a) Minimum ✅
(b) Maximum
(c) Zero
(d) Same
Explanation: Centrifugal force reduces g.

Q242. Assertion (A): Weightlessness occurs in free fall.
Reason (R): Apparent weight becomes zero.
(a) Both A and R true, R explains A ✅
(b) Both true, R does not explain A
(c) A true, R false
(d) Both false

Q243. A body of mass 10 kg weighs how much at Earth’s surface?
(a) 98 N ✅
(b) 10 N
(c) 980 N
(d) 100 N
Explanation: W = mg = 10 × 9.8.

Q244. A body of mass 10 kg weighs how much on Moon?
(a) 16 N ✅
(b) 98 N
(c) 100 N
(d) 0 N
Explanation: gMoon ≈ 1/6 gEarth.

Q245. Escape velocity on Moon is:
(a) 2.3 km/s ✅
(b) 11.2 km/s
(c) 7.9 km/s
(d) 5 km/s
Explanation: Lower due to smaller mass and radius.

Q246. Escape velocity on Mars is:
(a) 5 km/s ✅
(b) 11.2 km/s
(c) 2.3 km/s
(d) 7.9 km/s
Explanation: Intermediate between Earth and Moon.

Q247. Assertion (A): Gravitational force is central.
Reason (R): It acts along line joining two masses.
(a) Both A and R true, R explains A ✅
(b) Both true, R does not explain A
(c) A true, R false
(d) Both false

Q248. Assertion (A): Gravitational force is conservative.
Reason (R): Work done is path independent.
(a) Both A and R true, R explains A ✅
(b) Both true, R does not explain A
(c) A true, R false
(d) Both false

Q249. Gravitational force is responsible for:
(a) Planetary motion ✅
(b) Electric current
(c) Magnetism
(d) Nuclear fusion
Explanation: Gravity keeps planets in orbit.

Q250. Gravitational force is responsible for:
(a) Tides ✅
(b) Magnetism
(c) Electricity
(d) Nuclear force
Explanation: Moon’s gravity causes ocean tides.